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o

The Mobius function p(n) is defined as p(1) = 1, u(n) = (=1)* if
n 1S the product of k different primes, and u(n) = 0 otherwise.
Then

Introduction

M(z):= > u(n),

1<n<lzx

IS the difference between the number of squarefree positive
Integers n < x with an even number of prime factors and those
with an odd number of prime factors.

The Mertens conjecture states that |M(z)|//z < 1 forall x > 1.
This — but also the weaker assumption |M(z)|/+/x < C for all

x > 1 and some C > 1 —would imply the truth of the Riemann
hypothesis (RH).

In fact, it is known that RH <= Ve > 0, limy 00 M (z) /22T = 0.



o

The Mertens conjecture was shown to be false by Odlyzko and
Te Riele in 1985 with help of the lattice basis reduction (L?)
algorithm of A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovasz
(1982) for finding short vectors in lattices.

They proved the existence of some z for which M(x)/+/x > 1.06,
and of some other z for which M (z)//x < —1.009.

In 1987, Pintz gave an effective disproof of the Mertens
conjecture in the sense that he proved that | M (x)|/+/x > 1 for
some z < exp(3.21 x 10%4).

Nowadays, it is generally believed that the function M (x)/+/x IS
unbounded, both in the positive and in the negative direction.

Introduction, 2

Kotnik and Van de Lune, e.g., have conjectured that M(x)/\/x =

Q4 (v/logloglog x).




o

The complex zeros of the Riemann zeta function are denoted by
pj = % + 17, (we work in the range where the Riemann
hypothesis is known to be true) with v; = 14.1347... and

Vi <3 =12,

Furthermore, we write 1); = arg p,;¢'(p;) and a; = |p;C’(p;)| .
We also consider the zeros p; ordered according to
non-increasing values of «;, and denote them by o7 = 2 + 95
with the corresponding quantities ¢7, o7, j = 1,2,.

For example, the first five p7’s commde Wlth the flrst flve p;'s, but

P = P17, P = p1o, @and pg = pg
(With o = ay = 0.0163. .., a% = azo = 0.0141 ... and

ag = ag = 0.0137...).

Notation
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14.1347
21.0220
25.0109
30.4249
32.9351
37.5862
40.9187
43.3271
48.0052
49.7738

1.6933
1.3264
1.8851
1.0169
2.1297
1.2636
1.3540
2.2052
0.7096
2.0372

0.0891
0.0418
0.0291
0.0252
0.0220
0.0137
0.0164
0.0126
0.0133
0.0142

14.1347
21.0220
25.0109
30.4249
32.9351
40.9187
49.7738
37.5862
48.0052
43.3271

o



o

Systematic computations of M (x) for all z € [1, X| by Mertens

Direct approach

and many others have not led to a disproof of the Mertens con-
jecture. For X = 10, Kotnik and Van de Lune found the largest
positive value of M (x)/+/x to be 0.571 for x = 7766 842813 and
the largest negative value to be —0.525 for x = 71578 936 427 177.



o

Another approach is based on the following theorem of
Titchmarsh:

Theorem 1 If all the zeros of the Riemann zeta-function are
simple, then there is an increasing sequence {7, } such that

= lim >

v <T,

Another approach

~ R(z) + Z —1(2n/x)*"™ W

pC’ ¢(2n +1)

where R(z) = 2 — ( ) if z is an integer, and R(x) = 2 otherwise.
On the Riemann hypothe3|s, we have p = 2 + 27, giving:

M(:C) — 92 lim Z COS(VIO%LU —%) _|_O(£—1/2). 2)
Vi i 20 T ()



o

Hence, as n increases, the sum in (2) will eventually converge to

M (x)/+/x, with error on the order of magnitude of 1/+/x.
However, very little is known about the rate of this convergence,

as the coefficients |pj(’(pj)\_1 do not form a monotonically
decreasing sequence, but instead behave quite irregularly.
For some values of 2 up to 10', this rate of convergence has
been studied computationally by Kotnik and Van de Lune:
several thousands of terms generally suffice to bring the error
below 1%, but for much larger x this approach is not feasible.



o

The tric of Ingham was to consider, instead of (2), a weighthed
average of the function M (x)/+/x. In that case the terms of the
sum in (2) are multiplied by a function of bounded support, and
the series in (1) is transformed into a finite sum. Two such cases
will appear in what follows.

Ingham’s tric

We write =z = €Y, —oo < y < o0, and define

m(y) := M (z)x~ /% = M(e¥)e ¥/?,

m = limsup,_,,,m(y), m:=liminf, ,m(y).



o

Ingham’s tric, 2

Then we have the following
Theorem 2 Let

= Y cos(r XY L ain(r Yy ] €800y — ¥n)
h(y, T) ._20<§T [(1 =) cos(m =) + | =)

where p = 3 + iy are the complex zeros of the Riemann zeta
function which satisfy g5 = % and which are simple. Then for any
real yo we have

m < h(yo, T) <m

and any value h(y,T') is approximated arbitrarily closely, and
infinitely often, by M (z)/\/z.

Notice that also negative values of yy are allowed.



o

Graph of (1 — t) cos(wt) + 7! sin(nt)

Plot [(1-t)*Cos[Pi »t]+Sin[Pi »t]/Pi, {t, 0, 1}]
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An Inhomogeneous Diophantine @
approximation problem

Since

(1 —t)cos(mt) + 7 'sin(nt) >0for0 <t < 1

and since it is known that ) _ | Ip¢'(p)|~! diverges, the sum of the
coefficients of cos(yy — 1) in Theorem 2 can be made arbitrarily
large by choosing T' large enough. Consequently, if we could
find a value of y such that all of the vy — 1), are close to integer
multiples of 27, then we could make h(y,T') arbitrarily large. This
would contradict, by Theorem 2, the conjecture of Mertens or any

weaker form given above.



o

If the ~'s were linearly independent over the rationals, then by
Kronecker’s theorem there would indeed exist, for any € > 0,
Integer values of y satisfying

An inhomogeneous ..., 2

vy — Yy — 2mm | < €

for all v € (0,7") and certain integers m.,. This would show that

h(y,T), and hence M (zx)/+/x, can be made arbitrarily large. On
the same assumptions, a similar argument can be given to imply
that h(y,T), and hence M (x)/+/x, can be made arbitrarily large
on the negative side.

No good reason is known why among the ~’s there should exist

any linear dependencies over the rationals.



The lattice basis reduction algorithm i
The approach which actually led to a disproof of the Mertens
conjecture was based on the now well-known lattice basis
reduction (L3-) algorithm of Lenstra (A.K.), Lenstra (H.W., Jr.)
and Lovasz for finding short vectors in lattices.

With this algorithm, the inhomogeneous Diophantine
approximation problem could be solved for a much larger
number of terms than before the time that L2 was known.

The “prize” to pay was that any value of y that would come out

was quite large. Therefore, the first 2000 ~'s were computed
with an accuracy of about 100 decimal digits.

The best lower and upper bounds found in 1985 for m and m

were 1.06 and —1.009, respectively.



o

How is L? applied?
In order to find a y such that each of the numbers

(vjy — ;) mod 27, 1 < j < n, 3)

Is small, we transform this problem into a problem about short
vectors in lattices as follows. The lattice L used is generated by
the columns vy, v,, . . ., v, Of the following (n+2) x (n+2) matrix

(here [z] means the greatest integer < x):



The input matrix for L*

—[Vaiyi2"] [\egyi2v™0 21 /ai2”] 0
—[Vasy32"] [\/agv327" 0 [2m/32]

—[Vogr2Y]  [Vagryg2r Y] 0 0
2V nd 0 0 0
0 1 0 0

where v Is an integer satisfying 2n < v < 4n.



o

The L* algorithm produces a reduced basis v}, v}, ..., v/, for

the lattice L, where each new basis vector Is a linear
combination of the n 4+ 2 given basis vectors.

Now the (n + 1)-st coordinate of v,, which has value 2¥n*, is very
large compared to all the other entries of the original basis. Since
the reduced basis is a basis for the lattice L, it should contain
precisely one vector w which has a nonzero coordinate in the
(n + 1)-st position and that coordinate should be +2”n*. Without

loss of generality this may be taken to be 2vn?.



o

Given the original lattice basis, the j-th coordinate of this vector
w equals, for 1 < 5 < n:

[y ] - [y - m fory

and the (n + 2)-nd coordinate is z, for some integers
zZ,mi,ma, ..., my. |If the length of w is small, all of the

x  *xor—10 x| kol %> 14
24/ 05752 — w/ajij — My;2my [ a2

will be small, i.e., all of the
B = \/ai(yyj — ¥ — 2mmy)

will be very small, where y = z/1024.



o

The reason for the presence of the numbers «; in the lattice
basis is that we want to make the sum

n
Y ajcos(vyy — ) — 2mmy)
j=1

large. If the cos-arguments are all close to zero, this sum will
approximately be equal to:

n

St =5 Sl sy — 95 — 2mmy)P
j=1

j=1

and therefore we want the second sum to be small. This
corresponds to minimizing the euclidean norm of the vector

(B1, 32, ..., 3,) which is what the L? algorithm attempts to do.



Example
[ —129 1
—69 1
—82 1
n=4,v=8,L = :
—41 1
65536 0
0 1
1 —51 —55 —66
1 —51 —55 —262
;|1 51 219 —66
1 204 —55 —66
0 0 O 0
1 —-51 —55 —66

2 =64,y = 2/1024 = 0.0625

480

o O O O

—213
61

—12

—267

65536
64




Example, cont.

norms of vectors of L:

2.236. 255, 274, 328. 480, 65536.227
product=1.6 x 10'°

norms of vectors of L':

o

2.236, 228.079, 245.073, 293.373, 347.235, 65536.070
product=8.3 x 10'*

*

] of  cos(yjy— 7)) afcos(yiy —7)

1 0.0891 0.6896 0.0614

2 0.0418 0.9999 0.0418

3 0.0291 0.9486 0.0276

4 0.0252 0.6336 0.0160
sum: 0.1852 0.1468




o

We have applied the L3 algorithm with the matrix (4) as input, for
all the combinations (v, n) in the range v = 8,9, .. ., 400,
n=|v/4],lv/4 +1,...,[v/2]. To this end we used the function
gflll from the PARI/GP package. For a given v, the precision by
which the computations were carried out was chosen to be
log,,(2%) decimal digits. For each combination of v and n a
number z = z(v,n) was generated as described above and we
computed the local maximum of h(y,T') as defined above with y
in the neighborhood of z/1024, and T' = ~19000-

The ~;'s were computed to an accuracy of about 250 decimal
digits using the Mathematica package, and, as a check, using
the PARI/GP package. The computing time was about 600 CPU
hours on the SGI Altix 3700 Aster system of the Academic
Computing Centre Amsterdam (SARA).

Application of L’



Scatter plot of the large positive V&IL@
of h

Figure 1 gives for each v = 8,9, ...,400 and for each value of
z(v,n) which was found by the L3 algorithm, a scatter plot of the
positive values of

h(Z(V, n)/1024, ’)/2000) .

For increasing values of v, the corresponding h-values are In-
creasing on average, but at a rate that seems to decrease. For
the negative values of h the pattern is very similar. Reaching 1.3
and —1.3 would likely require a value of v in the neighborhood of

800.



L arge positive values of h, @
hence of M (x)/+/x

1.25 ! ! .
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FIGURE 1



o

For the most promising values of /A obtained, we computed the
local maximum resp. minimum of h(y, y10000) iN the
neighborhood of y = 2/1024. On the positive side, our champion
(found with v = 379, n = 98) IS
y = —233029271 5134531215 0140181996 7723401020 4456785091\
6681557518 6743434036 9240230890 8933261706 9029233958\
2730162362.807965 (logq |y| = 108.3...)
with h(yj’}/]’()()()()) = 1.218429
and on the negative side, our champion (found with
v =396,n = 102) Is

y = —1608 7349754400 0919817483 9640165505 4685212472\
2284778177 5539303027 5350690810 7957194829 6433602695\
1442102295 3212754000.679958 (logq |y| = 113.2...)
with h(y,’)/l()g()(}) = —1.229385.

Champions



‘o
Behaviour of M (e¥)/e¥/? near the cha

pions
Figure 2 compares the typical behaviour of M (e¥)/e¥/2 (top) with

the behaviour of h(y, y10000) @around the 1.218—spike (middle) and
around the —1.229—spike (bottom).
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o

Effective result of Pintz

Theorem 3 (Pintz, 1987) Let

—1.5x10~¢ 2COS(’Y?J wv)
=2 ) oo @

0<y<T

If there exists a y € [e7, €210 with |hp(y, T)| > 1 + e~*0 for
T = 1.4 x 104, then |M (x)|/+/z > 1 for some z < e¥™VY,

For the number y = yo ~ 3.2097 x 10 as given by Odlyzko and
Te Riele, on request of Pintz, Te Riele computed hp(yy, ") and
found the value —1.00223, which implies, by Pintz’'s Theorem, that

the Mertens conjecture is false for some z < exp(3.21 x 10%4).



o

We have computed hp(y,T') for many smaller values of y,

resulting from our application of the L3 algorithm above, in order
to attempt to reduce the upper bound for the smallest x for which
the Mertens conjecture is false. The smallest y for which we

found a value of |hp(y, T)| > 1 + e % is:

Improvement of Pintz’s result

y = 15853191167 3595000428 9014722171 6268116204.984802

with hp(y,T) = —1.00819. This shows that there exists an

r < exp(1.59 x 10%9)

for which the Mertens conjecture is false.



(). -behaviour of M (x)/+/x @

In Figure 3, we extend the study of Kotnik and van de Lune with
our results obtained here. The hollow squares and circles give

the increasingly large values of M (e¥)/v/e¥ and hy(y, yigs),
respectively, found by Kotnik and Van de Lune and the solid
circles give the values of hq(y, v10+) found by the L3 algorithm.
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o

We observe that the estimates of the largest positive and
negative values of M (x)/+/x are quite close to %\/log log log x

and —£/logloglog z, respectively.

Nevertheless, at the very largest y-values the positive and nega-
tive estimates appear to be systematically somewhat above the
first and somewhat below the second of these two functions, re-

spectively.



o

#® known lower bound 1.06 for lim sup M (x)/+/x raised to 1.218

known upper bound —1.009 for lim inf M (x)/+/x lowered to
—1.229

& explicit upper bound exp(3.21 x 10%%) of Pintz on the
smallest number for which the Mertens conjecture is false,
reduced to exp(1.59 x 10%°)

® numerical evidence for M (x)/+/x = Q+(v/logloglog x)

Conclusions
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