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Introduction

The Möbius function � ��� �

is defined as � �� � � � , � ��� � � ��� � � 	

if� is the product of




different primes, and � ��� � � �
otherwise.

Then � ��
 ��� �
� ��� ���

� ��� ���
is the difference between the number of squarefree positive
integers � � 
 with an even number of prime factors and those
with an odd number of prime factors.
The Mertens conjecture states that

� � � 
 � �� 
 � � for all 
 � � .
This – but also the weaker assumption

� � ��
 � �� 
 � �

for all
 � � and some

� � � – would imply the truth of the Riemann
hypothesis (RH).
In fact, it is known that RH �� �! � �� "#%$ � &' � � 
 �� 
 () *,+ � �

.
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Introduction, 2

The Mertens conjecture was shown to be false by Odlyzko and
Te Riele in 1985 with help of the lattice basis reduction (

� �

)
algorithm of A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász
(1982) for finding short vectors in lattices.
They proved the existence of some 
 for which

� ��
 �� 
 � ��� ��

,
and of some other 
 for which

� ��
 �� 
 � � ��� � ��

.
In 1987, Pintz gave an effective disproof of the Mertens
conjecture in the sense that he proved that

� � � 
 � �� 
 � � for
some 
 � �� � �	�� 
� � � � � 
 �

.
Nowadays, it is generally believed that the function

� ��
 �� 
 is
unbounded, both in the positive and in the negative direction.

Kotnik and Van de Lune, e.g., have conjectured that

� ��
 �� 
 �

��� � "�� � "�� � "�� � 
 �
.
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Notation
The complex zeros of the Riemann zeta function are denoted by

��� � � � � ��� � (we work in the range where the Riemann
hypothesis is known to be true) with � � � � �

� � 	 �	
� � � and

� � � � � *� ,


 � � � 
�� � � .
Furthermore, we write

� � � �
 � ��� � � � ��� �
and � � � � ��� � � � ��� � ��� � .

We also consider the zeros � � ordered according to
non-increasing values of � � , and denote them by � �� � � � � ��� ��

with the corresponding quantities
� �� � � �� ,


 � � � 
�� � � .
For example, the first five � �� ’s coincide with the first five � � ’s, but

� � � � �� , � �� � �� �, and � ��� � � �

(with � � � � � � � �� �� � 	 � � � � � �� � �� � � �� �� �� � � � and

� �� � � � � �� �� 	 	
� � � ).
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The first ten � ’s


 � � � � � � � ��
1

� �
� � 	 �	 � � � � 	 	 �� �� � � � �
� � 	 �	

2


� � � 
 
 � � � 	 
 � � �� � �� � 
��� � 
 
 �

3


��� �� �� � � � � � � �� � 
 � � 
�� �� ��

4

	 �� � 
 �� � � �� � � �� � 
� 
 	 �� � 
 ��

5

	 
� � 	 � � 
� � 
 � 	 �� � 
 
 � 	 
� � 	 � �

6

	 	
� � � � 
 � � 
 � 	 � �� �� 	 	 � �� � � � 	

7

� �� � � � 	 � � 	 � � � �� �� � � ��� 	 	 	 �

8

�	 � 	 
 	 � 
� 
 �� 
 �� �� 
 � 	 	
� � � � 


9

��� � �� 
 �� 	 �� � �� �� 	 	 ��� � �� 


10
��� 	 	 	 � 
� �	 	 
 �� �� � 
 �	�� 	 
 	 �
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Direct approach

Systematic computations of

� ��
 �

for all 
 � �� � � �

by Mertens

and many others have not led to a disproof of the Mertens con-

jecture. For

� � � �� 


, Kotnik and Van de Lune found the largest

positive value of

� ��
 �� 
 to be

�� � 	 �
for 
 � 	 	 � � � � 
 � � 	

and

the largest negative value to be � �� � 
 �
for 
 � 	 � � 	 � � 	 � � 
 	 � 	 	

.
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Another approach

Another approach is based on the following theorem of
Titchmarsh:
Theorem 1 If all the zeros of the Riemann zeta-function are
simple, then there is an increasing sequence

� �� �
such that

� ��
 � � "#%$� &' ��� ��� �
	

 �

� � � � � � � � ��
 � �
'

� 
�
��� � � � � � � 
�� � 
 � ��

� 
� �� � � � 
� � � � (1)

where

� ��
 � � 
 � � �� �
� if 
 is an integer, and

� ��
 � � 


otherwise.
On the Riemann hypothesis, we have � � � � � ��� , giving:

� ��
 �

 � 
 "#%$� &' �� � � ��	

� �� � � "�� � 
 � �� �

� � � � � � � � � � ��
 � � � � �
� (2)
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Hence, as � increases, the sum in (2) will eventually converge to� ��
 �� 
 , with error on the order of magnitude of
� � 
 .

However, very little is known about the rate of this convergence,
as the coefficients

� � � � � � ��� � �� �

do not form a monotonically
decreasing sequence, but instead behave quite irregularly.
For some values of 
 up to

� �� 


, this rate of convergence has
been studied computationally by Kotnik and Van de Lune:
several thousands of terms generally suffice to bring the error
below 1%, but for much larger 
 this approach is not feasible.

– p.8/32



Ingham’s tric

The tric of Ingham was to consider, instead of (2), a weighthed
average of the function

� ��
 �� 
 . In that case the terms of the
sum in (2) are multiplied by a function of bounded support, and
the series in (1) is transformed into a finite sum. Two such cases
will appear in what follows.

We write 
 � � �

, � � �� � �, and define

� �� �� � � ��
 � 
 � � � � � � � � � � �� � � �
,

�� � "#%$ � � � � &' � �� ��� �� � "#%$ #�� � � &' � �� �

.
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Ingham’s tric, 2

Then we have the following
Theorem 2 Let

� �� � � �� � 

�� � � �

� �� � �
�

� � �� �� �
�

� � � � � � #�� �� �
�

� � � �� � � � � �� �

� � � � � � � �

where � � � � ��� are the complex zeros of the Riemann zeta
function which satisfy

� � � � and which are simple. Then for any
real� � we have

� � � �� �� � � � �

and any value

� �� � � �
is approximated arbitrarily closely, and

infinitely often, by
� ��
 �� 
 .

Notice that also negative values of� � are allowed.
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Graph of

� � � � ��� �� �
	 � � 	 � � � 
�� �
	 � �
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An inhomogeneous Diophantine
approximation problem

Since

�� � � � � �� �� � � � � � � � #�� �� � � � �

for

� � � � �

and since it is known that �
� � � � � � � ��� � diverges, the sum of the

coefficients of � �� � � � � �� �

in Theorem 2 can be made arbitrarily

large by choosing

�

large enough. Consequently, if we could

find a value of� such that all of the � � � �� are close to integer

multiples of


� , then we could make

� �� � � �

arbitrarily large. This

would contradict, by Theorem 2, the conjecture of Mertens or any

weaker form given above.
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An inhomogeneous ..., 2

If the � ’s were linearly independent over the rationals, then by
Kronecker’s theorem there would indeed exist, for any  � �

,
integer values of� satisfying

� � � � �� � 
� �� � �  
for all � � � �� � �

and certain integers �� . This would show that

� �� � � �

, and hence

� ��
 �� 
 , can be made arbitrarily large. On
the same assumptions, a similar argument can be given to imply
that

� �� � � �

, and hence

� ��
 �� 
 , can be made arbitrarily large
on the negative side.

No good reason is known why among the � ’s there should exist

any linear dependencies over the rationals.
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The lattice basis reduction algorithm

The approach which actually led to a disproof of the Mertens
conjecture was based on the now well-known lattice basis
reduction (

� �

–) algorithm of Lenstra (A.K.), Lenstra (H.W., Jr.)
and Lovász for finding short vectors in lattices.
With this algorithm, the inhomogeneous Diophantine
approximation problem could be solved for a much larger
number of terms than before the time that

� �

was known.
The “prize” to pay was that any value of� that would come out
was quite large. Therefore, the first 2000 � ’s were computed
with an accuracy of about 100 decimal digits.

The best lower and upper bounds found in 1985 for � and �

were

��� ��

and � ��� � ��
, respectively.
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How is

�

applied?

In order to find a� such that each of the numbers

� � �� � � � �� � $ � � 
�� � � � 
 � � � (3)

is small, we transform this problem into a problem about short

vectors in lattices as follows. The lattice
�

used is generated by

the columns �� � � ��� � � � �� * � of the following

��� � 
 � � ��� � 
 �

matrix

(here

�
 �

means the greatest integer

� 
 ):
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The input matrix for

�

� � � �� � �� 
 � � � � �� � �� 
 �� � � � � 
� � �� 
 � � � � � � �

� � � � � � �� 
 � � � � � � � �� 
 �� � � � � � 
�� � � � 
 � �
� � � �

� � � � � �

� � � � � �

� � � � � �

� � � �� � �� 
 � � � � �� � �� 
 �� � � � � � � � �

� 
�� � �� 
 � �


 � � 
 � � � � � � �

� � � � � � � �

where � is an integer satisfying


� � � � �� .
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The

� �

algorithm produces a reduced basis �
�� � �
� ��� � � � �
�� * � for

the lattice

�

, where each new basis vector is a linear
combination of the � � 


given basis vectors.

Now the

��� � � �

-st coordinate of �� , which has value


 � � 


, is very

large compared to all the other entries of the original basis. Since

the reduced basis is a basis for the lattice

�

, it should contain

precisely one vector � which has a nonzero coordinate in the

��� � � �

-st position and that coordinate should be

� 
 � � 


. Without

loss of generality this may be taken to be


 � � 


.
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Given the original lattice basis, the




-th coordinate of this vector

� equals, for

� � 
 � � :

�

�

� �� � �� 
 �� � � � � �

� �� � �� 
 �
� � � �
� 
�� � �� 
 �
�

and the

��� � 
 �

-nd coordinate is �, for some integers

�� �� � � ��� � � � �� . If the length of � is small, all of the

� � �� � �� 
 �� � � � � �� � �� 
 � � � � 
� � �� 
 �

will be small, i.e., all of the

�� � � �� �� � �� � � �� � 
� � � �

will be very small, where� � �
� � � 
 �

.
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The reason for the presence of the numbers � �� in the lattice
basis is that we want to make the sum

�
� 
�

� �� � �� � � �� � � � �� � 
�� � � �

large. If the cos-arguments are all close to zero, this sum will
approximately be equal to:

�
� 
�

� �� �
�



�

� 
�
� � �� � � �� � � � �� � 
�� � � � � ��

and therefore we want the second sum to be small. This
corresponds to minimizing the euclidean norm of the vector� �� � � ��� � � � �� �

which is what the

� �

algorithm attempts to do.
– p.19/32



Example

� � �� � � � � � �
�

��
��
��
��
��
��
��
��
�

� � 
 � � �� � � � �

� � � � � 	 
 � � �

� � 
 � � � 
 	 � �

� �� � � � � 
� �

� � � 	 � � � � � �

� � � � � �
�

��
��
��
��
��
��
��
��
�

� � �
�

��
��
��
��
��
��
��
��
�

� � � � � � � � � � � 
� 	 � � �

� � � � � � � � 
 � 
 � � � �

� � � � 
� � � � � 	 � � �

� 
 � � � � � � � � � � 
 
	

� � � � � � � � 	 �

� � � � � � � � � � � 
 � 	 � �

�
��
��
��
��
��
��
��
��
�

� � � �� � � �
� � � 
 � � �� �� 
 �
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Example, cont.

norms of vectors of

�

:
� 
	 � � 
� � � 
 	 �� 	 
 � � �� �� � � � 	 �� 
 
 	

product=

� � � � � �� �

norms of vectors of

� �

:
� 
	 � � 
 
 �� � 	 � � 
 ��� � 	 	 � 
 � 	�� 	 	 	 � 	 �	
� 
	 � � � � � 	 �� � 	 �

product=

�� 	 � � �� 



 � �� � �� � � �� � � � �� � � �� � �� � � �� � � � �� �

1

�� �� � � �� � � � � �� �� � �

2

�� � �� � �� � � � � �� � �� �

3

�� � 
 � � �� � �� � �� � 
 	 �

4

�� � 
� 
 �� � 	 	 � �� �� � �

sum:
�� � � � 
 �� � �� �
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Application of

�

We have applied the

� �

algorithm with the matrix (4) as input, for
all the combinations

�
�� � �

in the range � � � � � �� � � � � � �
,� � �

�
� � � � �

�
� � � � � �� � � � �

�
� 
 �

. To this end we used the function
qflll from the PARI/GP package. For a given �, the precision by
which the computations were carried out was chosen to be"�� �� � � 
 � � �

decimal digits. For each combination of � and � a
number � � �

�
�� � �

was generated as described above and we
computed the local maximum of

� �� � � �
as defined above with�

in the neighborhood of �
� � � 
 �

, and

� � � � � � � � .
The � � ’s were computed to an accuracy of about 250 decimal
digits using the Mathematica package, and, as a check, using
the PARI/GP package. The computing time was about 600 CPU
hours on the SGI Altix 3700 Aster system of the Academic
Computing Centre Amsterdam (SARA).
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Scatter plot of the large positive values
of

Figure 1 gives for each � � � � � �� � � � � � �

and for each value of

�
�

�� � �

which was found by the

� �

algorithm, a scatter plot of the
positive values of

� �
�
�

�� � �� � � 
 �� � � � � � ��
For increasing values of �, the corresponding

�

-values are in-

creasing on average, but at a rate that seems to decrease. For

the negative values of

�

the pattern is very similar. Reaching

��� 	

and � � � 	

would likely require a value of � in the neighborhood of

� � �

.
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Large positive values of ,
hence of

�
�

�

�
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Champions

For the most promising values of

�

obtained, we computed the
local maximum resp. minimum of

� �� � � � � � � � � in the
neighborhood of� � �

� � � 
 �

. On the positive side, our champion
(found with � � 	 	 � � � � � �

) is

� � � 
	 	 � 
 � 
 	 � � � 	 �� 	 � 
� � �� � �� � � � � � 	 	 
	 � �� � 
 � � �� � 	 � � �� � �

� � � � � � 	 � � � � 	 �	 �	 � �	 � � 
 � � 
	 �� � � � � 	 	 
 � � 	 �� � � 
 � 
	 	 � � � �


 	 	 �� � 
	 � 
� � � 	 � � �

(

"�� �� � �� � � � ��� 	 � � � )
with

� �� � � � � � � � � � ��� 
� � � 
 �

and on the negative side, our champion (found with

� � 	 � � � � � � � 


) is

� � � � � �� 	 	 �� 	 � � � � � �� � � � � 	 �� 	 � � � �� � � � �� �� � � 
� 
 �	 
 �


 
 � �	 	 � � 	 	 � � 	 � 	 �	 � 
 	 � 	 � �� � �� � � 	 � � 	 � � �� 
 � � �	 	 � � 
 � � � �

� � � 
� � 
 
 � � 	 
� 
 	 � � � � �� � 	 � � � �

(

"�� �� � �� � � � � 	�� 
� � � )
with

� �� � � � � � � � � � � ��� 
 
 � 	 � �

.
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Behaviour of

�
� � � � � ��

near the cham-
pions

Figure 2 compares the typical behaviour of

� � � � �� � � � �
(top) with

the behaviour of

� �� � � � � � � � � around the

��� 
� �

–spike (middle) and

around the � ��� 
 
 �

–spike (bottom).
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Effective result of Pintz
Theorem 3 (Pintz, 1987) Let

��� �� � � ��� � 

�� � � �

�� � � ��� � �� � � ) � �� � � � � �� �

� � � � � � � � � (4)

If there exists a� � � � � � � ��� � � � �

with

� ��� �� � � � � � � � �� 
 �

for

� � ��� � � � � 


, then

� � ��
 � �� 
 � � for some 
 � � � * � �

.

For the number� � � � 	 	�� 
 �� 	 � � � � 


as given by Odlyzko and

Te Riele, on request of Pintz, Te Riele computed

� � �� �� � �

and

found the value � � � � � 
 
	
, which implies, by Pintz’s Theorem, that

the Mertens conjecture is false for some 
 � �� � �	�� 
� � � � � 
 �

.
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Improvement of Pintz’s result

We have computed

� � �� � � �

for many smaller values of� ,
resulting from our application of the

� �

algorithm above, in order
to attempt to reduce the upper bound for the smallest 
 for which
the Mertens conjecture is false. The smallest� for which we
found a value of

� ��� �� � � � � � � � �� 
 �

is:

� � � � � � 	 � � � � � 	 	 � � � � � � � 
 � � �� �	 
 
� 	 � � 
 � � � � � 
 � �
� � � �� � 


with

� � �� � � � � � ��� � �� � �

. This shows that there exists an


 � �� � ���� � � � � � 
 � �

for which the Mertens conjecture is false.
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� -behaviour of

�
�

�

�

In Figure 3, we extend the study of Kotnik and van de Lune with
our results obtained here. The hollow squares and circles give
the increasingly large values of

� � � � �� � �

and
�� �� � � � � � � ,

respectively, found by Kotnik and Van de Lune and the solid
circles give the values of

�� �� � � � � � � found by the

� �

algorithm.
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We observe that the estimates of the largest positive and
negative values of

� � 
 �� 
 are quite close to

�
� "�� � "�� � "�� � 


and � �
� "�� � "�� � "�� � 
 , respectively.

Nevertheless, at the very largest� -values the positive and nega-

tive estimates appear to be systematically somewhat above the

first and somewhat below the second of these two functions, re-

spectively.
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Conclusions

known lower bound

� � ��

for

"#%$ � � � � ��
 �� 
 raised to

��� 
� �

known upper bound � ��� � ��

for

"#%$ #�� � � � 
 �� 
 lowered to� � � 
 
 �

explicit upper bound �� � �	 � 
� � � � � 
 �
of Pintz on the

smallest number for which the Mertens conjecture is false,
reduced to �� � �� � � � � � � 
 � �
numerical evidence for

� ��
 �� 
 � ��� � "�� � "�� � "�� � 
 �
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