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THE MAIN RESULTS

Definition of Ramanujan’s τ -function:

x
∏

n≥1

(1− xn)24 =
∑
n≥1

τ(n)xn in Z[[x]].

Theorem 1 There exists a probabilistic algorithm that on input a prime
number p gives τ(p), in expected running time polynomial in log p.
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THE MAIN RESULTS

Behind the theorem is the existence of certain Galois representations. The
function ∆ on the complex upper half plane H given by:

∆: H → C, z 7→
∑
n≥1

τ(n)e2πinz

is a modular form, the so-called discriminant modular form. It is a new-form
of level 1 and weight 12.
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THE MAIN RESULTS

Deligne showed (1969) that, as conjectured by Serre, for each prime num-
ber l there is a (necessarily unique) semi-simple continuous representa-
tion:

ρl : Gal(Q/Q) � Gal(Kl/Q)↪→Aut(Vl),

with Vl a two-dimensional Fl-vector space, such that Q → Kl is unramified
at all primes p 6= l, and such that for all p 6= l the characteristic polynomial
of ρl(Frobp) is given by:

det(1− xFrobp, Vl) = 1− τ(p)x + p11x2.

In particular, we have trace(ρlFrobp) = τ(p) mod l for all primes p 6= l.

Serre and Swinnerton-Dyer: for l not in {2,3,5,7,23,691} we have
im(ρl) ⊃ SL(Vl).
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THE MAIN RESULTS

Theorem 2 There exists a probabilistic algorithm that computes ρl in time
polynomial in l. It gives:

1. the extension Q → Kl, given as a Q-basis e and the products
eiej =

∑
k ai,j,kek;

2. a list of the elements σ of Gal(Kl/Q), where each σ is given as its
matrix with respect to e;

3. the injective morphism ρl : Gal(Kl/Q)↪→GL2(Fl).

Theorem 2 implies Theorem 1 via “standard” algorithms.

Note: |τ(p)| < 2p11/2 by Deligne.
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CONTEXT AND MOTIVATION

0. More congruences for τ(p) than the classical ones.

1. Relation to Schoof’s algorithm for elliptic curves and Pila’s generalisation
to curves of fixed genus and abelian varieties of fixed dimension.

2. Computation of non-solvable global field extensions predicted by Lang-
lands’ program.

3. Computation of higher degree etale cohomology with Fl-coefficients,
with its Galois action.

4. Evidence towards existence of polynomial time computation of #X(Fp)

for X a fixed Z-scheme of finite type.
6



WHERE TO FIND Vl

Deligne’s work shows that Vl occurs in:

H11(E10
Q,et

, Fl)
∨,

H1(j-lineQ,et,Sym10(R1π∗Fl))
∨,

Jl(Q)[l].

Here Jl = jac(Xl), and Xl = X1(l), X1(l)(C) = Γ1(l)\(H ∪ P1(Q)).

Problem: gl := genus(Xl) is approximately l2/24.

Couveignes’ suggestion: don’t use computer algebra, but approximation
and height bounds instead.
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STRATEGY

We have:

Jl(C) = Cgl/Λ, Λ = H1(Xl(C), Z)

Vl ⊂ Jl(C)[l] = (l−1Λ)/Λ

Vl =
⋂

1≤i≤l2

ker (Ti − τ(i))

∞ ∈ Xl(Q)

We choose:

f : Xl,Q � P1
Q

as simple as possible.
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STRATEGY

φ : Xl(C)gl // // Jl(C) Cgl/Λ

Q � // [Q1 + · · ·+ Qgl − gl·∞]
gl∑

i=1

Qi∫
∞

(ω1, . . . , ωgl),

where (ω1, . . . , ωgl) is a basis of normalised newforms.

For x in Vl ⊂ l−1Λ/Λ, there are Qx,1, . . . , Qx,gl, unique up to permutation,
such that φ(Qx) = x (well, . . . ).

Consider:

Pl :=
∏

x 6=0

(T −
∑
i

f(Qx,i)) in Q[T ].
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STRATEGY

Then Kl is the splitting field of Pl.

Show that the (logarithmic) height of the coefficients of Pl are O(lc). Re-
call: h(a/b) = log(max(|a|, |b|)) if a, b ∈ Z, b 6= 0 and gcd(a, b) = 1.

Show that Pl can be approximated in C[T ] with a precision of n digits, in
time O((ln)c). Or approximated p-adically, or reductions mod many small
primes. . . .
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HEIGHT BOUND

Theorem 3 (Edixhoven, de Jong) There is an integer c such that for all l
we can take f in such a way that the height of the coefficients of Pl are
bounded above by lc.

Tool: Arakelov theory on Xl (Faltings’ arithmetic Riemann-Roch, etc.).

To get an impression (D := gl·∞, B := Spec(OKl
), X a model of Xl,

D′
x =

∑
i Qx,i):

(D′
x,∞) + log#R1p∗OX (D′

x) ≤ −
1

2
(D, D − ωX/B) + 2g2

l

∑
s∈B

δs log#k(s)

+
∑
σ

log ‖ϑ‖σ,sup +
gl

2
[Kl : Q] log(2π)

+
1

2
degdet p∗ωX/B + (D,∞) ,
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HEIGHT BOUND

log ‖ϑ‖sup = O(l6),

habs(Xl) = O(l2 log(l)), (absolute Faltings height)

sup
a 6=b

ga,µ(b) = O(l6), (Arakelov’s Green function; Merkl).
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HEIGHT BOUND, A BYPRODUCT.

Theorem 4 A prime number p 6 |l is said to be l-good if for all x in Vl − {0}
the following two conditions are satisfied:

1. at all places v of Kl over p the specialisation (D′
x)Fp

at v is the unique

effective divisor on the reduction Xl, Fp such that the difference with DFp
represents the specialisation of x;

2. the specialisations of the non-cuspidal part D′′
x of D′

x at all v above p

are disjoint from the cusps.

Then we have: ∑
p not l-good

log p ≤ c·l14.
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COUVEIGNES’ FINITE FIELD METHOD

Theorem 5 (Couveignes) There is a probabilistic algorithm that on input
l computes for p a prime that is l-good, the reductions (D′

x)Fp
of the di-

visors D′
x on X

l,Fp
, with an expected running time that is polynomial in l

and p.

Tool: computer algebra on Xl,Fpr , projecting random divisor classes into
Vl using Hecke operators (well . . . ).

Why not polynomial in log p? Only because one needs the numerator of
the zeta function of Xl,Fp

.
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EXAMPLES

Using Magma to do computations over C, Johan Bosman has found, for
l = 13,17 and 19, polynomials Pl , of degrees l2 − 1, and polynomials
P ′

l of degree l + 1.

We have no proof that these polynomials are correct, but they do pass the
following tests:

1. the ring of integers of the corresponding number field ramifies only at l,

2. the reductions modulo small primes p correspond to the orbit structures
of ρl(Frobp) on Vl − {0} and P(Vl).
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EXAMPLES

2535853P ′
13 = 2535853x14 − 127713190x13 − 9947603692x12

+ 795085450224x11 − 29425303073920x10

+ 667684302673440x9 − 9974188441308416x8

+ 106364914419352576x7 − 1012336515218109952x6

+ 9094902359324720640x5 − 60847891441699468288x4

+ 324814691085008943104x3

− 1761495929112889016320x2

+ 6235371687080448827392x

− 10767442738728520761344.
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EXAMPLES

A polynomial that gives the same extension (found using LLL):

x14 + 7x13 + 26x12 + 78x11 + 169x10 + 52x9 − 702x8 − 1248x7

+ 494x6 + 2561x5 + 312x4 − 2223x3 + 169x2 + 506x− 215,
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EXAMPLES

Required precision as suggested by Bosman’s computations:

about 80 digits for l = 13 (genus 2),

400 digits for l = 17 (genus 5),

and 830 digits for l = 19 (genus 7).

For l = 19 the computations were distributed over several machines and
still took a couple of months.

It seems that it is hard to get much further.
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EXAMPLES

Using same methods, Johan Bosman could also produce a polynomial
that gives a SL2(F16) extension of Q (was still missing in tables of
Jürgen Klüners), corresponding to a weight 2 modular form on Γ0(137)

(genus 11).

Klüners has checked that the Galois group is indeed SL2(F16).

In this case, Bosman tries to prove, using Khare-Wintenberger, that his
representation is right one.
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DETERMINISTIC VERSION?

Theorem 6 (Couveignes, arxiv) The operations of addition and subtraction
in the complex Jacobian J0(l)(C) of X0(l) can be done in determinis-
tic polynomial time in l and the required precision. More precisely, given
elements P , Q and R of X0(l)

g, elements S and D of X0(l)
g can be

computed in time polynomial in l and the required precision, such that
φ(S) = φ(Q)+φ(R) and φ(D) = φ(Q)−φ(R) hold within the required
precision. Moreover, for x in Cg/Λ, one can compute Q in X0(l)

g in time
polynomial in l and the required precision, such that φ(Q) = x holds within
the required precision.

This result will almost certainly be generalised to all curves X1(n), giving
deterministic versions of Theorems 1 and 2.
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THE END

Thank you for your attention!

Questions?
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