

Information Security Group

Hidden pairings and trapdoor DDH groups

Alexander W. Dent Joint work with Steven D. Galbraith

Pairings in cryptography

- Elliptic curves have become an important tool in cryptography…
- …and pairings have become an important tool within elliptic curve cryptography, both as an attack technique and to provide extra functionality.
- The main use is to solve the DDH and DL problems in large prime-order subgroups.

Pairings in cryptography

- High security pairing-based cryptography (Granger, Page and Smart)
- Constructing pairing-friendly curves of embedding degree 10 (Freeman)
- Fast bilinear maps from the Tate-Lichtenbaum pairing on hyperelliptic curves (Frey and Lange)

Pairings in cryptography

• In this paper we will be mostly concerned with the decisional Diffie-Hellam (DDH) problem:

Let G be a group generated by an element P.

The DDH problem is to determine, given (A,B,C), where $A=aP$, $B=bP$, whether $C=cP$ or $C=abP$, when a, b and (potentially) c are chosen at random.

Pairings in cryptography

- In all normal situations, when a pairing is computable, the pairing algorithm is comparatively obvious given the curve description.
- We conjecture that there exist elliptic curve groups on which a pairing can only be computed given some extra trapdoor information.
- z We call these *hidden pairings*.

Pairings in cryptography

- A hidden pairing is an instantiation of a trapdoor DDH group: a group on which the DDH problem can only be efficiently solved by an algorithm with the trapdoor information.
- We also conjecture the existence of trapdoor discrete logarithm groups.

Information Security Group

- Let p and q be large primes.
- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve such that $\mathsf{E}(\mathsf{F}_\rho)$ and $\mathsf{E}(\mathsf{F}_q)$ both have a small embedding degree.
- Hence, there exist a public pairing algorithm for $\mathsf{E}(\mathsf{F}_\rho)$ and $\mathsf{E}(\mathsf{F}_q).$
- Suppose further than $\#E(\mathsf{F}_\rho)$ and $\#E(\mathsf{F}_q)$ have large prime divisors *r* and *s*.

- Now consider the elliptic curve E over the ring Z *N* where *N*=*pq*.
- Clearly, group operations are efficient.
- E(Z_N) contains a cyclic subgroup of order *rs*.
- The security of elliptic curves over rings has been studied by Galbraith and McKee in "Pairings on elliptic curves over finite commutative rings".

Information Security Group

 \bullet

Information Security Group

First construction

 There is no evidence to suggest that, without knowing (a multiple of) *rs*, that we can compute pairings on this subgroup.

- If *r* and *s* are large enough, then knowledge of *rs* is enough to factor *N*.
- However, knowledge of (a multiple of) *rs* is sufficient to be able to compute a pairing.

- So, if we know $\#E(F_p)$ and $\#E(F_q)$, then we can compute pairings because *rs* divides #E(F *^p*)#E(F *q*).
- Alternatively, we can solve the DDH problem by projecting the points of the curve E(Z *^N*) onto $\mathsf{E}(\mathsf{F}_\rho)$ and $\mathsf{E}(\mathsf{F}_q)$ and solving these two problems individually.
- Hence, we can solve the DDH problem if we know *p* and *q*.

First construction

 \bullet

 \bullet

 \bullet

• Take p and q to be large primes congruent to 3 mod 4 for which there exists large prime divisors of *r* and *s* of *p+1* and *q+1*.

• Take E:
$$
y^2 = x^3 + x
$$
.

 $\bullet\,$ Then E is a supersingular curve over F $_{\rho}$ with embedding degree 2 and *p+1* points. And #E(F *^p*) has the large prime divisor *r*.

- \bullet \bullet This means that $\#\mathsf{E}(Z_{\mathsf{N}})$ = (p+1)(q+1).
- If we know p and q then we can compute pairings because rs divides into $(p+1)(q+1)$.
- **Hence we have a hidden pairing.**
- We can also solve the DDH problem on E(Z *^N*) by solving two DDH problems on E(F *^p*) and E(F *q*).

First construction

• What about the practicalities of cryptography:

- We can hash into the group by using the techniques of Demytko, i.e. we use the x-coordinate only and use a standard hash algorithm to map an arbitrary string to an element of Z *N*.
- We can use similar techniques to randomly sample elements from the group.
- The DDH problem has to be generalised in this case, but it's not difficult.
- Points will be of size log *N* ≈ 1024-bits.

- Our example also a cute property:
- We can delegate the ability to compute a pairing to a third party by releasing *rs* without giving away the factorisation of *N*.
- Obviously, in this case we want r and s to be large enough so that we can't break the system, but not so large that knowledge of *rs* implies knowledge of *p* and *q*.

Information Security Group

- \bullet This time we consider an elliptic curve E over a finite field F *^q* of characteristic 2.
- **•** In particular, we want q to be equal to 2mn.
- We also want there to exist an efficiently computable pairing on the elliptic curve.
- We will represent points on E using projective coordinates (*^x*:*y*:*^z*).
- And we will steal adapt an idea of Frey's.

Second construction

- $\bullet\,$ We may think F_q as a vector space of dimension *n* over the field F*q´* where *q´*=2 *m*.
- Hence, we may think of points as 3m-tuples:

 $(x_0, x_1, \ldots, x_{m-1}, y_0, y_1, \ldots, y_{m-1}, z_0, z_1, \ldots, z_{m-1})$

• We may think of the doubling formula as a series of 3*m* formulae (*fx_i,fy_i,fz_i)* in 3*m* variables such that if (*x´*:*y´*:*z´*)=[2](*^x*:*y*:*^z*) then

$$
x'_{i} = fx_{i}(x_{0}, x_{1},...,x_{m-1}, y_{0}, y_{1},...y_{m-1}, z_{0}, z_{1},...,z_{m-1})
$$

 \bullet

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

Second construction

 Each of these formulae are homogeneous polynomials of degree at most six.

 \bullet We can do the same thing to the addition formula to get 3 *m* formulae in 6 *m* variables, (*gxi*,*gyi*,*gzi*).

- Now we apply Frey's idea of disguising an elliptic curve.
- Let *U* be an invertible linear transformation on 3*m*-variables.
- We apply U to the point of $E(F_q)$.
- Note that we can express the addition and doubling formulae in this new system as

$$
f x_i = U f x_i U^1 \qquad \text{and} \qquad g x_i = U g x_i U^1
$$

- Public group description:
	- Blinded doubling and addition formulae
	- Blinded generator *U*(*P*)
	- The order *r* of the point *P*
- **Trapdoor information:**
	- $-$ The inverse transformation $U^{\mathfrak{q}}$
- Difficult to hash onto the group, sample group elements at random or even test for equality.

 \bullet

 \bullet

Information Security Group

- Wow, this all seems very dodgy!
- \bullet It is easy to break for finite fields and the algebraic torus T $_{\rm 2}$.
	- "Disguising tori and elliptic curves" (<http://eprint.iacr.org/2006/248>)
- It's also related to the isomorphism of polynomials problem.
- Faugère and Perret's result from Eurocrypt 2006 suggests parameter sizes have to be so large as to be infeasible in practice.

Information Security Group

Applications

Applications to cryptography

- Not as many as one would like.
- \bullet If trapdoor to be used by an individual, that individual must compute the group description.
- We give a few simple examples in the paper.
- Perhaps useful for a situation with a central authority that generates a group description on behalf of a set of users.
- Group signatures?

Applications to cryptography

- Applications to the Gap-DH problem?
- Most people assume that the Gap-DH problem is hard on any group for which the CDH problem is hard.
- Not proven when the DDH problem is hard.
- **Our results** *do not* **necessarily give new gap** groups.
- However, most proofs can be easily adapted.

Information Security Group

Questions?

Information Security Group

First construction

I'm not sure what the answer is right now, But why don't you pop it in an e-mail and I'll think about and get back to you.

You might want to CC Alex on the e-mail too.

Information Security Group

First construction

Oh that's an easy question. The answer's 'yes'. Or, in certain circumstances, 'no'. Hmmm. Maybe it's not as easy as I thought.

Why don't you e-mail it to me?

