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Pairings in cryptography

Elliptic curves have become an important tool 
in cryptography…
…and pairings have become an important tool 
within elliptic curve cryptography, both as an 
attack technique and to provide extra 
functionality.

The main use is to solve the DDH and DL 
problems in large prime-order subgroups.
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Pairings in cryptography

High security pairing-based cryptography
(Granger, Page and Smart)
Constructing pairing-friendly curves of 
embedding degree 10 
(Freeman)
Fast bilinear maps from the Tate-Lichtenbaum
pairing on hyperelliptic curves
(Frey and Lange)
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Pairings in cryptography

In this paper we will be mostly concerned with 
the decisional Diffie-Hellam (DDH) problem:

Let G be a group generated by an element P.

The DDH problem is to determine, given (A,B,C),
where A=aP, B=bP, whether C=cP or C=abP,

when a, b and (potentially) c are chosen at random.
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Pairings in cryptography

In all normal situations, when a pairing is 
computable, the pairing algorithm is 
comparatively obvious given the curve 
description.
We conjecture that there exist elliptic curve 
groups on which a pairing can only be 
computed given some extra trapdoor 
information.
We call these hidden pairings.
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Pairings in cryptography

A hidden pairing is an instantiation of a 
trapdoor DDH group: a group on which the 
DDH problem can only be efficiently solved by 
an algorithm with the trapdoor information.

We also conjecture the existence of trapdoor 
discrete logarithm groups.



First construction
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First construction

Let p and q be large primes.
Let E: y2 = x3 + ax + b be an elliptic curve such 
that E(Fp) and E(Fq) both have a small 
embedding degree.
Hence, there exist a public pairing algorithm for 
E(Fp) and E(Fq).
Suppose further than #E(Fp) and #E(Fq) have 
large prime divisors r and s.
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First construction

Now consider the elliptic curve E over the ring 
ZN where N=pq.
Clearly, group operations are efficient.
E(ZN) contains a cyclic subgroup of order rs.
The security of elliptic curves over rings has 
been studied by Galbraith and McKee in 
“Pairings on elliptic curves over finite 
commutative rings”.



11

First construction

Yes?
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First construction

There is no evidence to suggest that, 
without knowing (a multiple of) rs, that we 
can compute pairings on this subgroup.
If r and s are large enough, then 
knowledge of rs is enough to factor N.
However, knowledge of (a multiple of) rs is 
sufficient to be able to compute a pairing.
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First construction

So, if we know #E(Fp) and #E(Fq), then we can 
compute pairings because rs divides 
#E(Fp)#E(Fq).
Alternatively, we can solve the DDH problem 
by projecting the points of the curve E(ZN) onto 
E(Fp) and E(Fq) and solving these two 
problems individually.
Hence, we can solve the DDH problem if we 
know p and q.
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First construction

Take p and q to be large primes 
congruent to 3 mod 4 for which there 
exists large prime divisors of r and s of 
p+1 and q+1.
Take E: y2 = x3 + x.
Then E is a supersingular curve over Fp
with embedding degree 2 and p+1 points.
And #E(Fp) has the large prime divisor r.
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First construction

This means that #E(ZN) = (p+1)(q+1).
If we know p and q then we can compute 
pairings because rs divides into 
(p+1)(q+1).
Hence we have a hidden pairing.
We can also solve the DDH problem on 
E(ZN)  by solving two DDH problems on 
E(Fp) and E(Fq).
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First construction

What about the practicalities of cryptography:
– We can hash into the group by using the techniques 

of Demytko, i.e. we use the x-coordinate only and 
use a standard hash algorithm to map an arbitrary 
string to an element of ZN.

– We can use similar techniques to randomly sample 
elements from the group.

– The DDH problem has to be generalised in this 
case, but it’s not difficult.

– Points will be of size log N ≈ 1024-bits.
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First construction

Our example also a cute property:
We can delegate the ability to compute a 
pairing to a third party by releasing rs without 
giving away the factorisation of N.
Obviously, in this case we want r and s to be 
large enough so that we can’t break the 
system, but not so large that knowledge of rs
implies knowledge of p and q.



Second construction
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Second construction

This time we consider an elliptic curve E over a 
finite field Fq of characteristic 2.
In particular, we want q to be equal to 2mn.
We also want there to exist an efficiently 
computable pairing on the elliptic curve.
We will represent points on E using projective 
coordinates (x:y:z).
And we will  steal  adapt an idea of Frey’s.
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Second construction

We may think Fq as a vector space of 
dimension n over the field Fq´ where q´=2m.
Hence, we may think of points as 3m-tuples:

(x0,x1,…,xm-1,y0,y1,..ym-1,z0,z1,…,zm-1)
We may think of the doubling formula as a 
series of 3m formulae (fxi,fyi,fzi) in 3m variables 
such that if (x´:y´:z´)=[2](x:y:z) then 
x´i = fxi(x0,x1,…,xm-1,y0,y1,..ym-1,z0,z1,…,zm-1)
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Second construction

Each of these formulae are homogeneous 
polynomials of degree at most six.

We can do the same thing to the addition 
formula to get 3m formulae in 6m variables, 
(gxi,gyi,gzi).
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Second construction

Now we apply Frey’s idea of disguising an 
elliptic curve.
Let U be an invertible linear transformation on 
3m-variables.
We apply U to the point of E(Fq).
Note that we can express the addition and 
doubling formulae in this new system as

fx´i = U fxi U-1 and      gx´i = U gxi U-1
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Second construction

Public group description:
– Blinded doubling and addition formulae
– Blinded generator U(P)
– The order r of the point P

Trapdoor information:
– The inverse transformation U-1

Difficult to hash onto the group, sample group 
elements at random or even test for equality.
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Second construction
Wow, this all seems very dodgy!
It is easy to break for finite fields and the algebraic 
torus T2.
“Disguising tori and elliptic curves”
(http://eprint.iacr.org/2006/248)

It’s also related to the isomorphism of polynomials 
problem.
Faugère and Perret’s result from Eurocrypt 2006 
suggests parameter sizes have to be so large as to 
be infeasible in practice.

http://eprint.iacr.org/2006/248


Applications
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Applications to cryptography

Not as many as one would like.
If trapdoor to be used by an individual, that 
individual must compute the group description.
We give a few simple examples in the paper.
Perhaps useful for a situation with a central 
authority that generates a group description on 
behalf of a set of users.
Group signatures?
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Applications to cryptography

Applications to the Gap-DH problem?
Most people assume that the Gap-DH problem 
is hard on any group for which the CDH 
problem is hard.
Not proven when the DDH problem is hard.
Our results do not necessarily give new gap 
groups.
However, most proofs can be easily adapted.



Questions?
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First construction

Wow, that’s a great question.
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First construction

I’m not sure what the answer is right now,
But why don’t you pop it in an e-mail and

I’ll think about and get back to you.

You might want to CC Alex on the e-mail too.
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First construction

Oh that’s an easy question.
The answer’s ‘yes’.

Or, in certain circumstances, ‘no’.
Hmmm. Maybe it’s not as easy as I thought.

Why don’t you e-mail it to me?
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