## Computing Pro-p Galois Groups

Nigel Boston and Harris Nover

July 22, 2006

Nigel Boston and Harris Nover Computing Pro-p Galois Groups

・ロン ・回と ・ヨン・

-2

#### Introduction

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

- 4 回 2 - 4 回 2 - 4 回 2 - 4

-2

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

#### Overview of the Talk

#### Finite Galois Groups

Nigel Boston and Harris Nover Computing Pro-p Galois Groups

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

-2

#### Overview of the Talk

- Finite Galois Groups
- Infinite Galois Groups

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

イロト イヨト イヨト イヨト

-2

## Overview of the Talk

- Finite Galois Groups
- Infinite Galois Groups
- Combining Group Theory and Number Theory Computations

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ

#### Notation

#### ► K− number field

Nigel Boston and Harris Nover Computing Pro-p Galois Groups

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨン ・ ヨン

- ► K− number field
- p- rational prime (usually p=2)

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

-2

- ► K− number field
- p- rational prime (usually p=2)
- S- finite set of primes of K none lying above p

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

- ► K− number field
- p- rational prime (usually p=2)
- S- finite set of primes of K none lying above p
- $K^{S}$  union of *p*-extensions of *K* unramified outside *S*

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- ► K− number field
- p- rational prime (usually p=2)
- S- finite set of primes of K none lying above p
- $K^{S}$  union of *p*-extensions of *K* unramified outside *S*
- $G- \operatorname{Gal}(K^S/K)$

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨン ・ ヨン

#### Why We Care About G

▶ *p*-class towers of historical importance (the case of  $S = \emptyset$ )

・ロン ・回 と ・ ヨ と ・ ヨ と

- ▶ *p*-class towers of historical importance (the case of  $S = \emptyset$ )
- ▶ Root-discriminant bounds: e.g. among totally complex K, how small can rd(K) := |Disc(K)|<sup>1/[K:Q]</sup> be? Under GRH, Liminf ≥ 44. Record: Liminf ≤ 82 (Hajir-Maire).

・ロン ・回 と ・ ヨ と ・ ヨ と

- ▶ *p*-class towers of historical importance (the case of  $S = \emptyset$ )
- ► Root-discriminant bounds: e.g. among totally complex K, how small can rd(K) := |Disc(K)|<sup>1/[K:Q]</sup> be? Under GRH, Liminf ≥ 44. Record: Liminf ≤ 82 (Hajir-Maire).
- Note: If L/K is unramified, then rd(L) = rd(K). So if Gal(K<sup>∅</sup>/K) is infinite, then above Liminf ≤ rd(K).

・ロン ・回と ・ヨン・

- ▶ *p*-class towers of historical importance (the case of  $S = \emptyset$ )
- ▶ Root-discriminant bounds: e.g. among totally complex K, how small can rd(K) := |Disc(K)|<sup>1/[K:Q]</sup> be? Under GRH, Liminf ≥ 44. Record: Liminf ≤ 82 (Hajir-Maire).
- Note: If L/K is unramified, then rd(L) = rd(K). So if Gal(K<sup>∅</sup>/K) is infinite, then above Liminf ≤ rd(K).
- ▶ The tame case of the Fontaine-Mazur Conjecture: every *p*-adic representation  $G \rightarrow GL_n(\mathbf{Z}_p)$  has finite image.

・ロン ・回と ・ヨン・

- ▶ *p*-class towers of historical importance (the case of  $S = \emptyset$ )
- ▶ Root-discriminant bounds: e.g. among totally complex K, how small can rd(K) := |Disc(K)|<sup>1/[K:Q]</sup> be? Under GRH, Liminf ≥ 44. Record: Liminf ≤ 82 (Hajir-Maire).
- Note: If L/K is unramified, then rd(L) = rd(K). So if Gal(K<sup>∅</sup>/K) is infinite, then above Liminf ≤ rd(K).
- ▶ The tame case of the Fontaine-Mazur Conjecture: every *p*-adic representation  $G \rightarrow GL_n(\mathbf{Z}_p)$  has finite image.
- Interesting pro-p groups arise for group theorists.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

◆□ > ◆□ > ◆臣 > ◆臣 > ○

## Ingredients

• Our goal is to find G. We know various things about G.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

-2

- Our goal is to find G. We know various things about G.
- ► If H is a subgroup of finite index, it equals Gal(K<sup>S</sup>/L) for some number field L.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

- Our goal is to find G. We know various things about G.
- ► If H is a subgroup of finite index, it equals Gal(K<sup>S</sup>/L) for some number field L.
- ► By class field theory, its maximal abelian quotient H/H' is isomorphic to the *p*-primary part Cl<sub>S</sub>(L) of a ray class group of L (and in particular is finite).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- Our goal is to find G. We know various things about G.
- ► If H is a subgroup of finite index, it equals Gal(K<sup>S</sup>/L) for some number field L.
- ▶ By class field theory, its maximal abelian quotient H/H' is isomorphic to the *p*-primary part Cl<sub>S</sub>(L) of a ray class group of L (and in particular is finite).
- ▶ By Burnside's basis theorem, the generator rank d(G) equals d(G/G') = d(Cl<sub>S</sub>(K)).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- Our goal is to find G. We know various things about G.
- ► If H is a subgroup of finite index, it equals Gal(K<sup>S</sup>/L) for some number field L.
- ▶ By class field theory, its maximal abelian quotient H/H' is isomorphic to the *p*-primary part Cl<sub>S</sub>(L) of a ray class group of L (and in particular is finite).
- By Burnside's basis theorem, the generator rank d(G) equals d(G/G') = d(Cl<sub>S</sub>(K)).
- ► Shafarevich:  $0 \le r(G) d(G) \le r_1 + r_2 1 + \theta_S$  ( $\theta_S = 0, 1$ ).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

- Our goal is to find G. We know various things about G.
- ► If H is a subgroup of finite index, it equals Gal(K<sup>S</sup>/L) for some number field L.
- ▶ By class field theory, its maximal abelian quotient H/H' is isomorphic to the *p*-primary part Cl<sub>S</sub>(L) of a ray class group of L (and in particular is finite).
- By Burnside's basis theorem, the generator rank d(G) equals d(G/G') = d(Cl<sub>S</sub>(K)).
- ► Shafarevich:  $0 \le r(G) d(G) \le r_1 + r_2 1 + \theta_S$  ( $\theta_S = 0, 1$ ).
- In certain cases, e.g. K = Q, the relations of G come from local, i.e. tame, relations. These say that the generator τ<sub>i</sub> of inertia at q<sub>i</sub> ∈ S satisfies τ<sup>σ<sub>i</sub></sup><sub>i</sub> = τ<sup>q<sub>i</sub></sup><sub>i</sub> note we do not know the Frobenius elements σ<sub>i</sub> in terms of the generators τ<sub>i</sub> of G.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

-2

# Finite G

 Our strategy (NB, Leedham-Green) is to search for G by finding successively larger quotients of it, namely its p-central series quotients.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- Our strategy (NB, Leedham-Green) is to search for G by finding successively larger quotients of it, namely its p-central series quotients.
- ▶ Bad news: sometimes we find a short list of candidates for *G*, rather than a unique *G*.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- Our strategy (NB, Leedham-Green) is to search for G by finding successively larger quotients of it, namely its p-central series quotients.
- ▶ Bad news: sometimes we find a short list of candidates for *G*, rather than a unique *G*.
- Good news: these candidates are usually so similar that any question you ask of them (order, nilpotency class, ...) will have a unique answer.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- Our strategy (NB, Leedham-Green) is to search for G by finding successively larger quotients of it, namely its p-central series quotients.
- ▶ Bad news: sometimes we find a short list of candidates for *G*, rather than a unique *G*.
- Good news: these candidates are usually so similar that any question you ask of them (order, nilpotency class, ...) will have a unique answer.
- We focus on fields K such that rd(K) is small but Cl<sub>∅</sub>(K) is large.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

- Our strategy (NB, Leedham-Green) is to search for G by finding successively larger quotients of it, namely its p-central series quotients.
- ▶ Bad news: sometimes we find a short list of candidates for *G*, rather than a unique *G*.
- Good news: these candidates are usually so similar that any question you ask of them (order, nilpotency class, ...) will have a unique answer.
- We focus on fields K such that rd(K) is small but Cl<sub>∅</sub>(K) is large.
- ► The method also yields theoretical results (same input ⇒ same output) E.g. Benjamin, Lemmermeyer, Snyder computed 2-class towers of imaginary quadratic K with Cl<sub>Ø</sub>(K) = [2, 2, 2] but left gaps.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

## O'Brien's Algorithm

▶ The lower *p*-central series of a *p*-group *G* is given by:  $P_0(G) = G$ ,  $P_{k+1}(G) = P_k(G)^p[G, P_k(G)]$ . So  $G = P_0(G) \ge P_1(G) \ge ...$ 

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

-2

- ▶ The lower *p*-central series of a *p*-group *G* is given by:  $P_0(G) = G$ ,  $P_{k+1}(G) = P_k(G)^p[G, P_k(G)]$ . So  $G = P_0(G) \ge P_1(G) \ge ...$
- The smallest c such that  $P_c(G) = \{1\}$  is the p-class of G.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

<ロ> (四) (四) (三) (三) (三)

- ▶ The lower *p*-central series of a *p*-group *G* is given by:  $P_0(G) = G$ ,  $P_{k+1}(G) = P_k(G)^p[G, P_k(G)]$ . So  $G = P_0(G) \ge P_1(G) \ge ...$
- The smallest c such that  $P_c(G) = \{1\}$  is the p-class of G.
- ▶ We obtain a sequence of *p*-quotients  $G = G/P_c(G) \rightarrow G/P_{c-1}(G) \rightarrow ...G/P_1(G) \cong (\mathbf{Z}/p)^{d(G)}.$

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- ▶ The lower *p*-central series of a *p*-group *G* is given by:  $P_0(G) = G$ ,  $P_{k+1}(G) = P_k(G)^p[G, P_k(G)]$ . So  $G = P_0(G) \ge P_1(G) \ge ...$
- The smallest c such that  $P_c(G) = \{1\}$  is the p-class of G.
- ▶ We obtain a sequence of *p*-quotients  $G = G/P_c(G) \rightarrow G/P_{c-1}(G) \rightarrow ...G/P_1(G) \cong (\mathbf{Z}/p)^{d(G)}.$
- If H ≅ G/P<sub>k+1</sub>(G) and K ≅ G/P<sub>k</sub>(G), we say that H is an immediate descendant of K.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト ・ ヨ

- ▶ The lower *p*-central series of a *p*-group *G* is given by:  $P_0(G) = G$ ,  $P_{k+1}(G) = P_k(G)^p[G, P_k(G)]$ . So  $G = P_0(G) \ge P_1(G) \ge ...$
- The smallest c such that  $P_c(G) = \{1\}$  is the p-class of G.
- We obtain a sequence of *p*-quotients  $G = G/P_c(G) \rightarrow G/P_{c-1}(G) \rightarrow ...G/P_1(G) \cong (\mathbf{Z}/p)^{d(G)}.$
- If H ≅ G/P<sub>k+1</sub>(G) and K ≅ G/P<sub>k</sub>(G), we say that H is an immediate descendant of K.
- O'Brien's algorithm finds all immediate descendants of a given p-group K (up to isomorphism).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨン ・ ヨン

#### Method with Leedham-Green

► To find our Galois group G, we successively find G/P<sub>k</sub>(G) (k = 1, 2, ...).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

(日) (同) (E) (E) (E)

#### Method with Leedham-Green

- ► To find our Galois group G, we successively find G/P<sub>k</sub>(G) (k = 1, 2, ...).
- ▶ Note that  $G/P_1(G) = (\mathbf{Z}/p)^{d(G)}$  and  $d(G) = d(Cl_S(K))$ .

・ロン ・回 ・ ・ ヨン ・ ヨン

## Method with Leedham-Green

- ► To find our Galois group G, we successively find G/P<sub>k</sub>(G) (k = 1, 2, ...).
- ▶ Note that  $G/P_1(G) = (\mathbf{Z}/p)^{d(G)}$  and  $d(G) = d(Cl_S(K))$ .
- ► Given G/P<sub>k-1</sub>(G), O'Brien's algorithm yields all possible G/P<sub>k</sub>(G).

・ロン ・回 と ・ ヨ と ・ ヨ と

## Method with Leedham-Green

- ► To find our Galois group G, we successively find G/P<sub>k</sub>(G) (k = 1, 2, ...).
- ▶ Note that  $G/P_1(G) = (\mathbf{Z}/p)^{d(G)}$  and  $d(G) = d(Cl_S(K))$ .
- ► Given G/P<sub>k-1</sub>(G), O'Brien's algorithm yields all possible G/P<sub>k</sub>(G).
- ► We only save those G/P<sub>k</sub>(G) that are number theoretically feasible- namely that do not violate information we have about abelianizations of low index subgroups of G or about the generator and relation ranks of G.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

## Generating Lattice Data

For simplicity of exposition, take the case p = 2 and S = Ø. For the general case the same ideas apply with class groups replaced by certain ray class groups. We want G = Gal(K<sup>∅</sup>/K).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

- For simplicity of exposition, take the case p = 2 and S = Ø. For the general case the same ideas apply with class groups replaced by certain ray class groups. We want G = Gal(K<sup>∅</sup>/K).
- First calculate the 2-class group Cl<sub>∅</sub>(K). This tells us G/G' and so G/P<sub>1</sub>(G) and d(G).

・ロン ・回と ・ヨン・

- For simplicity of exposition, take the case p = 2 and S = Ø. For the general case the same ideas apply with class groups replaced by certain ray class groups. We want G = Gal(K<sup>∅</sup>/K).
- First calculate the 2-class group Cl<sub>∅</sub>(K). This tells us G/G' and so G/P<sub>1</sub>(G) and d(G).
- ► Explicit class field theory yields all unramified quadratic extensions of K. For each such L we compute Cl<sub>0</sub>(L).

・ロン ・回 と ・ ヨ と ・ ヨ と

- For simplicity of exposition, take the case p = 2 and S = Ø. For the general case the same ideas apply with class groups replaced by certain ray class groups. We want G = Gal(K<sup>∅</sup>/K).
- First calculate the 2-class group Cl<sub>∅</sub>(K). This tells us G/G' and so G/P<sub>1</sub>(G) and d(G).
- ► Explicit class field theory yields all unramified quadratic extensions of K. For each such L we compute Cl<sub>0</sub>(L).
- Stop there, or find all unramified quadratic extensions of all such L and their 2-class groups. Check for duplicates.

・ロン ・回 と ・ ヨン ・ ヨン

- For simplicity of exposition, take the case p = 2 and S = Ø. For the general case the same ideas apply with class groups replaced by certain ray class groups. We want G = Gal(K<sup>∅</sup>/K).
- First calculate the 2-class group Cl<sub>∅</sub>(K). This tells us G/G' and so G/P<sub>1</sub>(G) and d(G).
- ► Explicit class field theory yields all unramified quadratic extensions of K. For each such L we compute Cl<sub>0</sub>(L).
- Stop there, or find all unramified quadratic extensions of all such L and their 2-class groups. Check for duplicates.
- Now you have the abelianizations of all index ≤ 4 subgroups of G.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

#### Pruning the Tree (Abelianizations)

• Given  $G/P_{k-1}(G)$ , find all its immediate descendants.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

- Given  $G/P_{k-1}(G)$ , find all its immediate descendants.
- ► For each such P, compute its subgroups of index ≤ 4 and their abelianizations.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 とくほど ・ ほとう

- Given  $G/P_{k-1}(G)$ , find all its immediate descendants.
- ► For each such P, compute its subgroups of index ≤ 4 and their abelianizations.
- $\blacktriangleright$  Compare with the abelianizations of subgroups of index  $\leq 4$  of  ${\cal G}_{\cdot}$  .

・ロン ・回と ・ヨン・

- Given  $G/P_{k-1}(G)$ , find all its immediate descendants.
- ► For each such P, compute its subgroups of index ≤ 4 and their abelianizations.
- $\blacktriangleright$  Compare with the abelianizations of subgroups of index  $\leq$  4 of  $G_{\cdot}$  .
- The abelianizations for *P* have to be no bigger than those for *G*.

・ロン ・回と ・ヨン・

- Given  $G/P_{k-1}(G)$ , find all its immediate descendants.
- ► For each such P, compute its subgroups of index ≤ 4 and their abelianizations.
- $\blacktriangleright$  Compare with the abelianizations of subgroups of index  $\leq$  4 of  $G_{\cdot}$  .
- The abelianizations for P have to be no bigger than those for G.
- ▶ For k large enough, the abelianizations for P must equal those for G.

・ロン ・回 と ・ ヨ と ・ ヨ と

- Given  $G/P_{k-1}(G)$ , find all its immediate descendants.
- ► For each such P, compute its subgroups of index ≤ 4 and their abelianizations.
- $\blacktriangleright$  Compare with the abelianizations of subgroups of index  $\leq$  4 of  $G_{\cdot}$  .
- The abelianizations for P have to be no bigger than those for G.
- ▶ For k large enough, the abelianizations for P must equal those for G.
- Delete any P that fail either of these two constraints.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

## Pruning the Tree (Cohomology)

▶ Lemma: If  $G_k = G/P_k(G)$ , then the difference between the *p*-multiplicator rank and nuclear rank of *G* is at most r(G).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

## Pruning the Tree (Cohomology)

- ▶ Lemma: If  $G_k = G/P_k(G)$ , then the difference between the *p*-multiplicator rank and nuclear rank of *G* is at most r(G).
- Moreover, we have earlier bounds for r(G) for instance if K is totally complex, 0 ≤ r(G) d(G) ≤ [K : Q]/2. Knowing d(G) this bounds r(G).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

## Pruning the Tree (Cohomology)

- ▶ Lemma: If  $G_k = G/P_k(G)$ , then the difference between the *p*-multiplicator rank and nuclear rank of *G* is at most r(G).
- Moreover, we have earlier bounds for r(G) for instance if K is totally complex, 0 ≤ r(G) d(G) ≤ [K : Q]/2. Knowing d(G) this bounds r(G).
- For the immediate descendant under consideration, P, delete it if the difference between its p-multiplicator rank and nuclear rank is too large.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 とくほど ・ ほとう

## Pruning the Tree (Cohomology)

- ▶ Lemma: If  $G_k = G/P_k(G)$ , then the difference between the *p*-multiplicator rank and nuclear rank of *G* is at most r(G).
- Moreover, we have earlier bounds for r(G) for instance if K is totally complex, 0 ≤ r(G) d(G) ≤ [K : Q]/2. Knowing d(G) this bounds r(G).
- For the immediate descendant under consideration, P, delete it if the difference between its p-multiplicator rank and nuclear rank is too large.
- You can also keep track of inertial generators and complex conjugation (no help if S = Ø and K is totally complex!).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

-2

#### Narrowing Candidates

If this process terminates, then we know G is on the list of candidates (so G is finite).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- If this process terminates, then we know G is on the list of candidates (so G is finite).
- This (often long) list can be shortened by finding an index 4 subgroup whose index 8 subgroups differ among the different candidates.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- If this process terminates, then we know G is on the list of candidates (so G is finite).
- This (often long) list can be shortened by finding an index 4 subgroup whose index 8 subgroups differ among the different candidates.
- Find the field corresponding to this index 4 subgroup.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- If this process terminates, then we know G is on the list of candidates (so G is finite).
- This (often long) list can be shortened by finding an index 4 subgroup whose index 8 subgroups differ among the different candidates.
- ► Find the field corresponding to this index 4 subgroup.
- Find its unramified quadratic extensions and their 2-class groups.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

- If this process terminates, then we know G is on the list of candidates (so G is finite).
- This (often long) list can be shortened by finding an index 4 subgroup whose index 8 subgroups differ among the different candidates.
- ► Find the field corresponding to this index 4 subgroup.
- Find its unramified quadratic extensions and their 2-class groups.
- See which of the candidates have matching abelianizations.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ



#### • Let $K = \mathbf{Q}(\sqrt{-3135})$ .

Nigel Boston and Harris Nover Computing Pro-p Galois Groups

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

ヘロン ヘヨン ヘヨン ヘヨン

-2

- Let  $K = \mathbf{Q}(\sqrt{-3135})$ .
- rd(K) = 56 so if K has an infinite 2-class tower, then the liminf bound drops from 82 to 56.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- Let  $K = \mathbf{Q}(\sqrt{-3135})$ .
- rd(K) = 56 so if K has an infinite 2-class tower, then the liminf bound drops from 82 to 56.
- Its 2-class group is [2, 2, 2], one of the cases Benjamin-Lemmermeyer-Snyder left open.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- Let  $K = \mathbf{Q}(\sqrt{-3135})$ .
- rd(K) = 56 so if K has an infinite 2-class tower, then the liminf bound drops from 82 to 56.
- Its 2-class group is [2, 2, 2], one of the cases Benjamin-Lemmermeyer-Snyder left open.
- Lattice data K has 7 unramified quadratic extensions; the 2-class groups are [2, 2, 2] (three times), [2, 8] (twice), [2, 2, 2, 2] (once), [2, 16] (once).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- Let  $K = \mathbf{Q}(\sqrt{-3135})$ .
- rd(K) = 56 so if K has an infinite 2-class tower, then the liminf bound drops from 82 to 56.
- Its 2-class group is [2, 2, 2], one of the cases Benjamin-Lemmermeyer-Snyder left open.
- Lattice data K has 7 unramified quadratic extensions; the 2-class groups are [2,2,2] (three times), [2,8] (twice), [2,2,2,2] (once), [2,16] (once).
- ► At the next level we get 31 fields, degree 4 over K, and their 2-class groups.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

-2

## Example (Continued)

# G/P<sub>1</sub>(G) ≅ (Z/2)<sup>3</sup>, which by O'Brien has 67 immediate descendants.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 とくほど ・ ほとう

- ► G/P<sub>1</sub>(G) ≅ (Z/2)<sup>3</sup>, which by O'Brien has 67 immediate descendants.
- Of these, 4 fail the cohomological condition.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- ► G/P<sub>1</sub>(G) ≅ (Z/2)<sup>3</sup>, which by O'Brien has 67 immediate descendants.
- Of these, 4 fail the cohomological condition.
- ► A further 44 have too large an abelianization.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- G/P<sub>1</sub>(G) ≅ (Z/2)<sup>3</sup>, which by O'Brien has 67 immediate descendants.
- Of these, 4 fail the cohomological condition.
- A further 44 have too large an abelianization.
- Another 18 have an index 2 subgroup with too large abelianization.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

- G/P₁(G) ≅ (Z/2)<sup>3</sup>, which by O'Brien has 67 immediate descendants.
- Of these, 4 fail the cohomological condition.
- A further 44 have too large an abelianization.
- Another 18 have an index 2 subgroup with too large abelianization.
- Leaves 1 immediate descendant, which must be  $G/P_2(G)!$

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

◆□ > ◆□ > ◆臣 > ◆臣 > ○

-2

### Example (Continued)

► This group has 186 immediate descendants.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- This group has 186 immediate descendants.
- All but 16 (all order 256) fail cohomological or abelianization criterion.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト

- This group has 186 immediate descendants.
- All but 16 (all order 256) fail cohomological or abelianization criterion.
- ► The search grows, but ultimately we're left with 240 candidates for *G*.

・ロト ・回ト ・ヨト ・ヨト

- This group has 186 immediate descendants.
- All but 16 (all order 256) fail cohomological or abelianization criterion.
- ► The search grows, but ultimately we're left with 240 candidates for *G*.
- We apply the cohomological criterion to low index subgroups of each candidate, leaving 84 survivors.

・ロン ・回と ・ヨン・

- This group has 186 immediate descendants.
- All but 16 (all order 256) fail cohomological or abelianization criterion.
- ► The search grows, but ultimately we're left with 240 candidates for *G*.
- We apply the cohomological criterion to low index subgroups of each candidate, leaving 84 survivors.
- Computing extensions of particular degree 4 extensions of K eventually cut us down to 4 candidates, all order 8192 and of derived length 3.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

-2

#### Upshot in Finite Case

The search for fields of low discriminant but infinite 2-class tower has a long history.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

イロン イヨン イヨン イヨン

## Upshot in Finite Case

- The search for fields of low discriminant but infinite 2-class tower has a long history.
- Several years ago, Stark asked if Q(√-2379) (2-class group [4,4]) has infinite 2-class tower, i.e. infinite G. Bush showed it finite and obtained the first examples with derived length 3.

・ロン ・回 と ・ ヨ と ・ ヨ と

# Upshot in Finite Case

- The search for fields of low discriminant but infinite 2-class tower has a long history.
- Several years ago, Stark asked if Q(√-2379) (2-class group [4,4]) has infinite 2-class tower, i.e. infinite G. Bush showed it finite and obtained the first examples with derived length 3.
- ▶ Next promising case,  $\mathbf{Q}(\sqrt{-3135})$ , shown to have finite *G* by Nover.

・ロン ・回と ・ヨン・

# Upshot in Finite Case

- The search for fields of low discriminant but infinite 2-class tower has a long history.
- Several years ago, Stark asked if Q(√-2379) (2-class group [4,4]) has infinite 2-class tower, i.e. infinite G. Bush showed it finite and obtained the first examples with derived length 3.
- ▶ Next promising case,  $\mathbf{Q}(\sqrt{-3135})$ , shown to have finite *G* by Nover.
- ▶ Next one,  $\mathbf{Q}(\sqrt{-5460})$ , leads to combinatorial explosion but is suspected to have finite *G*.

・ロン ・回 と ・ ヨ と ・ ヨ と

# Upshot in Finite Case

- The search for fields of low discriminant but infinite 2-class tower has a long history.
- Several years ago, Stark asked if Q(√-2379) (2-class group [4,4]) has infinite 2-class tower, i.e. infinite G. Bush showed it finite and obtained the first examples with derived length 3.
- ▶ Next promising case,  $\mathbf{Q}(\sqrt{-3135})$ , shown to have finite *G* by Nover.
- ▶ Next one,  $\mathbf{Q}(\sqrt{-5460})$ , leads to combinatorial explosion but is suspected to have finite *G*.
- Perhaps there are better lower bounds for Liminf ?!

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

4

#### Infinite G

#### ▶ We know very little about infinite *G*.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

-2

### Infinite G

- We know very little about infinite G.
- How do we proceed in this case?

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

イロト イヨト イヨト イヨト

-2

# Infinite G

- We know very little about infinite G.
- How do we proceed in this case?
- Idea: Write down everything we know about G and find all such pro-p groups!

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨン ・ ヨン

#### An Experiment

#### • Let $K = \mathbf{Q}$ , p = 2, and $S = \{q, r\}$ , where $q, r \equiv 5 \pmod{8}$ .

Nigel Boston and Harris Nover Computing Pro-p Galois Groups

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・四 ・ ・ ヨン ・ ヨン

#### An Experiment

• Let  $K = \mathbf{Q}$ , p = 2, and  $S = \{q, r\}$ , where  $q, r \equiv 5 \pmod{8}$ .

G has pro-2 presentation of the form
< x, y | x<sup>a</sup> = x<sup>q</sup>, y<sup>b</sup> = y<sup>r</sup> > (unknown a, b).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロット (四) (日) (日)

-2

- Let  $K = \mathbf{Q}$ , p = 2, and  $S = \{q, r\}$ , where  $q, r \equiv 5 \pmod{8}$ .
- G has pro-2 presentation of the form
  < x, y | x<sup>a</sup> = x<sup>q</sup>, y<sup>b</sup> = y<sup>r</sup> > (unknown a, b).
- ▶ Then  $G = \langle x, y | x^c = x^5, y^d = y^5 \rangle$  (unknown c, d).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロト ・回ト ・ヨト ・ヨト ・ ヨ

- Let  $K = \mathbf{Q}$ , p = 2, and  $S = \{q, r\}$ , where  $q, r \equiv 5 \pmod{8}$ .
- G has pro-2 presentation of the form
  < x, y | x<sup>a</sup> = x<sup>q</sup>, y<sup>b</sup> = y<sup>r</sup> > (unknown a, b).
- ▶ Then  $G = \langle x, y | x^c = x^5, y^d = y^5 \rangle$  (unknown c, d).
- ▶ If  $q, r \equiv 5 \pmod{8}$  and q is a 4th power mod r but not vice versa, then G is infinite.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

<ロ> (四) (四) (三) (三) (三)

- Let  $K = \mathbf{Q}$ , p = 2, and  $S = \{q, r\}$ , where  $q, r \equiv 5 \pmod{8}$ .
- G has pro-2 presentation of the form
  < x, y | x<sup>a</sup> = x<sup>q</sup>, y<sup>b</sup> = y<sup>r</sup> > (unknown a, b).
- ▶ Then  $G = \langle x, y | x^c = x^5, y^d = y^5 \rangle$  (unknown c, d).
- ▶ If  $q, r \equiv 5 \pmod{8}$  and q is a 4th power mod r but not vice versa, then G is infinite.
- Idea: pick random words c, d and look at  $\langle x, y \mid x^c = x^5, y^d = y^5 \rangle$ .

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

(日) (同) (E) (E) (E)

- ▶ Let  $K = \mathbf{Q}$ , p = 2, and  $S = \{q, r\}$ , where  $q, r \equiv 5 \pmod{8}$ .
- G has pro-2 presentation of the form
  < x, y | x<sup>a</sup> = x<sup>q</sup>, y<sup>b</sup> = y<sup>r</sup> > (unknown a, b).
- ▶ Then  $G = \langle x, y | x^c = x^5, y^d = y^5 \rangle$  (unknown c, d).
- ▶ If  $q, r \equiv 5 \pmod{8}$  and q is a 4th power mod r but not vice versa, then G is infinite.
- Idea: pick random words c, d and look at  $\langle x, y | x^c = x^5, y^d = y^5 \rangle$ .
- ▶ If the abelianizations of its low index subgroups are all finite and the sizes of its *p*-quotients do not stabilize (within range of computer), then save *c*, *d*.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

-2

# An Experiment (Continued)

▶ We thus obtain some plausible *c*, *d* and so plausible *G*.

イロト イヨト イヨト イヨト

# An Experiment (Continued)

- We thus obtain some plausible *c*, *d* and so plausible *G*.
- Amazing observation the G that survive belong to one special family.

(日) (同) (E) (E) (E)

# An Experiment (Continued)

- We thus obtain some plausible *c*, *d* and so plausible *G*.
- Amazing observation the G that survive belong to one special family.
- ► Conjecture: (1) *G* has presentation of the form  $< x, y \mid x^a = x^5, y^4 = 1 >$  (2) Moreover, the orders of  $G/P_k(G)$  (k = 1, 2, ...) are  $2^2, 2^5, 2^8, 2^{11}, 2^{14}, 2^{16}, 2^{20}, 2^{24}, 2^{30}, 2^{36}, 2^{44}, 2^{52}, 2^{64}, 2^{76}, 2^{93}, ...$

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨン ・ ヨン

-2

### Strategy in Infinite Case

#### A Golod-Shafarevich (G-S) group is one satisfying r(G) ≤ d(G)<sup>2</sup>/4.

・ロン ・回と ・ヨン・

# Strategy in Infinite Case

- A Golod-Shafarevich (G-S) group is one satisfying r(G) ≤ d(G)<sup>2</sup>/4.
- ► To show that *G* is infinite, it's enough to find a G-S subgroup of finite index.

イロン 不同と 不同と 不同と

# Strategy in Infinite Case

- A Golod-Shafarevich (G-S) group is one satisfying  $r(G) \le d(G)^2/4$ .
- ► To show that *G* is infinite, it's enough to find a G-S subgroup of finite index.
- ► The Virtual Golod-Shafarevich (VGS) Conjecture says that infinite *G* always have a G-S subgroup of finite index.

・ロン ・回と ・ヨン・

# Strategy in Infinite Case

- A Golod-Shafarevich (G-S) group is one satisfying  $r(G) \le d(G)^2/4$ .
- ► To show that *G* is infinite, it's enough to find a G-S subgroup of finite index.
- The Virtual Golod-Shafarevich (VGS) Conjecture says that infinite G always have a G-S subgroup of finite index.
- Strategy to prove G infinite find family of groups that G belongs to; find their G-S subgroup; locate the corresponding field; apply Golod-Shafarevich to it.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

-2

#### Tame Fontaine-Mazur Conjecture

Recall this says that no G has an infinite quotient that's a subgroup of some GL<sub>n</sub>(Z<sub>p</sub>).

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

イロト イヨト イヨト イヨト

### Tame Fontaine-Mazur Conjecture

- Recall this says that no G has an infinite quotient that's a subgroup of some GL<sub>n</sub>(Z<sub>p</sub>).
- The VGS conjecture implies more generally that every infinite G has a large action on a locally finite, rooted tree.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

イロン イヨン イヨン イヨン

#### Arboreal Galois Representations

 If T is a locally finite, rooted tree, then a continuous homomorphism Gal(K/K) → Aut(T) is called an arboreal Galois representation.

イロン イヨン イヨン イヨン

## Arboreal Galois Representations

- If T is a locally finite, rooted tree, then a continuous homomorphism Gal(K/K) → Aut(T) is called an arboreal Galois representation.
- One source of these comes from the extension of the tame Fontaine-Mazur conjecture.

イロン イヨン イヨン イヨン

## Arboreal Galois Representations

- If T is a locally finite, rooted tree, then a continuous homomorphism Gal(K/K) → Aut(T) is called an arboreal Galois representation.
- One source of these comes from the extension of the tame Fontaine-Mazur conjecture.
- Another source comes from Galois action on roots of iterates of a polynomial.

イロン イヨン イヨン イヨン

# Arboreal Galois Representations

- If T is a locally finite, rooted tree, then a continuous homomorphism Gal(K/K) → Aut(T) is called an arboreal Galois representation.
- One source of these comes from the extension of the tame Fontaine-Mazur conjecture.
- Another source comes from Galois action on roots of iterates of a polynomial.
- In analogy to p-adic Galois representations, we look to characterize their images and the images of their Frobenius elements.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

◆□ > ◆□ > ◆臣 > ◆臣 > ○

4

## Example (with Rafe Jones)

• Let 
$$f = (x+1)^2 - 2 \in \mathbf{Q}[x]$$
.

Nigel Boston and Harris Nover Computing Pro-p Galois Groups

・ロン ・回と ・ヨン・

# Example (with Rafe Jones)

- Let  $f = (x+1)^2 2 \in \mathbf{Q}[x]$ .
- ► The *n*th iterate of *f* has discriminant a 2-power, so the Galois action on its roots is ramified only at 2 and ∞. (These roots form the *n*th level of a tree *T*.)

・ロン ・回と ・ヨン・

# Example (with Rafe Jones)

- Let  $f = (x+1)^2 2 \in \mathbf{Q}[x]$ .
- ► The *n*th iterate of *f* has discriminant a 2-power, so the Galois action on its roots is ramified only at 2 and ∞. (These roots form the *n*th level of a tree *T*.)
- ▶ Big Question: Is the union of the splitting fields of all these iterates the maximal 2-extension of Q unramified outside 2 and ∞?

・ロト ・回ト ・ヨト ・ヨト

# Example (with Rafe Jones)

- Let  $f = (x+1)^2 2 \in \mathbf{Q}[x]$ .
- ► The *n*th iterate of *f* has discriminant a 2-power, so the Galois action on its roots is ramified only at 2 and ∞. (These roots form the *n*th level of a tree *T*.)
- ▶ Big Question: Is the union of the splitting fields of all these iterates the maximal 2-extension of Q unramified outside 2 and ∞?
- ► Thanks to Klüners and Fieker, we find the Galois groups of the *n*th iterates (n = 1, 2, ..., 7), which have orders 2<sup>1</sup>, 2<sup>3</sup>, 2<sup>6</sup>, 2<sup>11</sup>, 2<sup>22</sup>, 2<sup>43</sup>, 2<sup>86</sup>.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

### Conjecture

The Basilica group B =< a, b > is a known subgroup of Aut(T) with similar growth.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回と ・ヨン・

- The Basilica group B =< a, b > is a known subgroup of Aut(T) with similar growth.
- ► Conjecture: The Galois group of the *n*th iterate over Q(*i*) is the subgroup < [*a*, *b*], *aba* > acting on the 2<sup>n</sup> vertices of *T* at level *n*.

Finite Galois Groups Infinite Galois Groups Combining Group Theory and Number Theory Computations

・ロン ・回 と ・ ヨ と ・ ヨ と

- The Basilica group B =< a, b > is a known subgroup of Aut(T) with similar growth.
- ► Conjecture: The Galois group of the *n*th iterate over Q(*i*) is the subgroup < [*a*, *b*], *aba* > acting on the 2<sup>n</sup> vertices of *T* at level *n*.
- ▶ The closure of < [*a*, *b*], *aba* > is not free.

・ロン ・回と ・ヨン・

- The Basilica group B =< a, b > is a known subgroup of Aut(T) with similar growth.
- ► Conjecture: The Galois group of the *n*th iterate over Q(*i*) is the subgroup < [*a*, *b*], *aba* > acting on the 2<sup>n</sup> vertices of *T* at level *n*.
- ▶ The closure of < [*a*, *b*], *aba* > is not free.
- ► The Galois group over Q(i) of the maximal 2-extension unramified outside 2 and ∞ is free (Markscheitis, 1963).

・ロン ・回 と ・ ヨ と ・ ヨ と

- The Basilica group B =< a, b > is a known subgroup of Aut(T) with similar growth.
- ► Conjecture: The Galois group of the *n*th iterate over Q(*i*) is the subgroup < [*a*, *b*], *aba* > acting on the 2<sup>n</sup> vertices of *T* at level *n*.
- ▶ The closure of < [*a*, *b*], *aba* > is not free.
- ► The Galois group over Q(i) of the maximal 2-extension unramified outside 2 and ∞ is free (Markscheitis, 1963).
- Consequence: Answer to the big question is no. (In fact, we just need that B contains no nonabelian free pro-2 subgroup.)