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Notation

I K− number field

I p− rational prime (usually p = 2)

I S− finite set of primes of K none lying above p

I KS− union of p-extensions of K unramified outside S

I G− Gal(KS/K )
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Why We Care About G

I p-class towers of historical importance (the case of S = ∅)

I Root-discriminant bounds: e.g. among totally complex K ,
how small can rd(K ) := |Disc(K )|1/[K :Q] be? Under GRH,
Liminf ≥ 44. Record: Liminf ≤ 82 (Hajir-Maire).

I Note: If L/K is unramified, then rd(L) = rd(K ). So if
Gal(K ∅/K ) is infinite, then above Liminf ≤ rd(K ).

I The tame case of the Fontaine-Mazur Conjecture: every
p-adic representation G → GLn(Zp) has finite image.

I Interesting pro-p groups arise for group theorists.
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Ingredients

I Our goal is to find G . We know various things about G .

I If H is a subgroup of finite index, it equals Gal(KS/L) for
some number field L.

I By class field theory, its maximal abelian quotient H/H ′ is
isomorphic to the p-primary part ClS(L) of a ray class group
of L (and in particular is finite).

I By Burnside’s basis theorem, the generator rank d(G ) equals
d(G/G ′) = d(ClS(K )).

I Shafarevich: 0 ≤ r(G )− d(G ) ≤ r1 + r2 − 1 + θS (θS = 0, 1).

I In certain cases, e.g. K = Q, the relations of G come from
local, i.e. tame, relations. These say that the generator τi of
inertia at qi ∈ S satisfies τσi

i = τqi
i - note we do not know the

Frobenius elements σi in terms of the generators τi of G .
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Finite G

I Our strategy (NB, Leedham-Green) is to search for G by
finding successively larger quotients of it, namely its p-central
series quotients.

I Bad news: sometimes we find a short list of candidates for G ,
rather than a unique G .

I Good news: these candidates are usually so similar that any
question you ask of them (order, nilpotency class, ...) will
have a unique answer.

I We focus on fields K such that rd(K ) is small but Cl∅(K ) is
large.

I The method also yields theoretical results (same input =⇒
same output) E.g. Benjamin, Lemmermeyer, Snyder
computed 2-class towers of imaginary quadratic K with
Cl∅(K ) = [2, 2, 2] but left gaps.
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O’Brien’s Algorithm

I The lower p-central series of a p-group G is given by:
P0(G ) = G , Pk+1(G ) = Pk(G )p[G ,Pk(G )]. So
G = P0(G ) ≥ P1(G ) ≥ ...

I The smallest c such that Pc(G ) = {1} is the p-class of G .

I We obtain a sequence of p-quotients
G = G/Pc(G ) → G/Pc−1(G ) → ...G/P1(G ) ∼= (Z/p)d(G).

I If H ∼= G/Pk+1(G ) and K ∼= G/Pk(G ), we say that H is an
immediate descendant of K .

I O’Brien’s algorithm finds all immediate descendants of a given
p-group K (up to isomorphism).
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Method with Leedham-Green

I To find our Galois group G , we successively find G/Pk(G )
(k = 1, 2, ...).

I Note that G/P1(G ) = (Z/p)d(G) and d(G ) = d(ClS(K )).

I Given G/Pk−1(G ), O’Brien’s algorithm yields all possible
G/Pk(G ).

I We only save those G/Pk(G ) that are number theoretically
feasible- namely that do not violate information we have
about abelianizations of low index subgroups of G or about
the generator and relation ranks of G .
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Generating Lattice Data

I For simplicity of exposition, take the case p = 2 and S = ∅.
For the general case the same ideas apply with class groups
replaced by certain ray class groups. We want
G = Gal(K ∅/K ).

I First calculate the 2-class group Cl∅(K ). This tells us G/G ′

and so G/P1(G ) and d(G ).

I Explicit class field theory yields all unramified quadratic
extensions of K . For each such L we compute Cl∅(L).

I Stop there, or find all unramified quadratic extensions of all
such L and their 2-class groups. Check for duplicates.

I Now you have the abelianizations of all index ≤ 4 subgroups
of G .

Nigel Boston and Harris Nover Computing Pro-p Galois Groups



Outline
Introduction

Finite Galois Groups
Infinite Galois Groups
Combining Group Theory and Number Theory Computations

Generating Lattice Data

I For simplicity of exposition, take the case p = 2 and S = ∅.
For the general case the same ideas apply with class groups
replaced by certain ray class groups. We want
G = Gal(K ∅/K ).

I First calculate the 2-class group Cl∅(K ). This tells us G/G ′

and so G/P1(G ) and d(G ).

I Explicit class field theory yields all unramified quadratic
extensions of K . For each such L we compute Cl∅(L).

I Stop there, or find all unramified quadratic extensions of all
such L and their 2-class groups. Check for duplicates.

I Now you have the abelianizations of all index ≤ 4 subgroups
of G .

Nigel Boston and Harris Nover Computing Pro-p Galois Groups



Outline
Introduction

Finite Galois Groups
Infinite Galois Groups
Combining Group Theory and Number Theory Computations

Generating Lattice Data

I For simplicity of exposition, take the case p = 2 and S = ∅.
For the general case the same ideas apply with class groups
replaced by certain ray class groups. We want
G = Gal(K ∅/K ).

I First calculate the 2-class group Cl∅(K ). This tells us G/G ′

and so G/P1(G ) and d(G ).

I Explicit class field theory yields all unramified quadratic
extensions of K . For each such L we compute Cl∅(L).

I Stop there, or find all unramified quadratic extensions of all
such L and their 2-class groups. Check for duplicates.

I Now you have the abelianizations of all index ≤ 4 subgroups
of G .

Nigel Boston and Harris Nover Computing Pro-p Galois Groups



Outline
Introduction

Finite Galois Groups
Infinite Galois Groups
Combining Group Theory and Number Theory Computations

Generating Lattice Data

I For simplicity of exposition, take the case p = 2 and S = ∅.
For the general case the same ideas apply with class groups
replaced by certain ray class groups. We want
G = Gal(K ∅/K ).

I First calculate the 2-class group Cl∅(K ). This tells us G/G ′

and so G/P1(G ) and d(G ).

I Explicit class field theory yields all unramified quadratic
extensions of K . For each such L we compute Cl∅(L).

I Stop there, or find all unramified quadratic extensions of all
such L and their 2-class groups. Check for duplicates.

I Now you have the abelianizations of all index ≤ 4 subgroups
of G .

Nigel Boston and Harris Nover Computing Pro-p Galois Groups



Outline
Introduction

Finite Galois Groups
Infinite Galois Groups
Combining Group Theory and Number Theory Computations

Generating Lattice Data
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Pruning the Tree (Abelianizations)

I Given G/Pk−1(G ), find all its immediate descendants.

I For each such P, compute its subgroups of index ≤ 4 and
their abelianizations.

I Compare with the abelianizations of subgroups of index ≤ 4
of G . .

I The abelianizations for P have to be no bigger than those for
G .

I For k large enough, the abelianizations for P must equal those
for G .

I Delete any P that fail either of these two constraints.
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Pruning the Tree (Cohomology)

I Lemma: If Gk = G/Pk(G ), then the difference between the
p-multiplicator rank and nuclear rank of G is at most r(G ).

I Moreover, we have earlier bounds for r(G ) - for instance if K
is totally complex, 0 ≤ r(G )− d(G ) ≤ [K : Q]/2. Knowing
d(G ) this bounds r(G ).

I For the immediate descendant under consideration, P, delete
it if the difference between its p-multiplicator rank and
nuclear rank is too large.

I You can also keep track of inertial generators and complex
conjugation (no help if S = ∅ and K is totally complex!).
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Narrowing Candidates

I If this process terminates, then we know G is on the list of
candidates (so G is finite).

I This (often long) list can be shortened by finding an index 4
subgroup whose index 8 subgroups differ among the different
candidates.

I Find the field corresponding to this index 4 subgroup.

I Find its unramified quadratic extensions and their 2-class
groups.

I See which of the candidates have matching abelianizations.
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Example

I Let K = Q(
√
−3135).

I rd(K ) = 56 so if K has an infinite 2-class tower, then the
liminf bound drops from 82 to 56.

I Its 2-class group is [2, 2, 2], one of the cases
Benjamin-Lemmermeyer-Snyder left open.

I Lattice data - K has 7 unramified quadratic extensions; the
2-class groups are [2, 2, 2] (three times), [2, 8] (twice),
[2, 2, 2, 2] (once), [2, 16] (once).

I At the next level we get 31 fields, degree 4 over K , and their
2-class groups.
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Example (Continued)

I G/P1(G ) ∼= (Z/2)3, which by O’Brien has 67 immediate
descendants.

I Of these, 4 fail the cohomological condition.

I A further 44 have too large an abelianization.

I Another 18 have an index 2 subgroup with too large
abelianization.

I Leaves 1 immediate descendant, which must be G/P2(G )!
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Example (Continued)

I This group has 186 immediate descendants.

I All but 16 (all order 256) fail cohomological or abelianization
criterion.

I The search grows, but ultimately we’re left with 240
candidates for G .

I We apply the cohomological criterion to low index subgroups
of each candidate, leaving 84 survivors.

I Computing extensions of particular degree 4 extensions of K
eventually cut us down to 4 candidates, all order 8192 and of
derived length 3.
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Upshot in Finite Case

I The search for fields of low discriminant but infinite 2-class
tower has a long history.

I Several years ago, Stark asked if Q(
√
−2379) (2-class group

[4, 4]) has infinite 2-class tower, i.e. infinite G . Bush showed
it finite and obtained the first examples with derived length 3.

I Next promising case, Q(
√
−3135), shown to have finite G by

Nover.

I Next one, Q(
√
−5460), leads to combinatorial explosion but

is suspected to have finite G .

I Perhaps there are better lower bounds for Liminf ?!
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Infinite G

I We know very little about infinite G .

I How do we proceed in this case?

I Idea: Write down everything we know about G and find all
such pro-p groups!
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An Experiment

I Let K = Q, p = 2, and S = {q, r}, where q, r ≡ 5 (mod 8).

I G has pro-2 presentation of the form
< x , y | xa = xq, yb = y r > (unknown a, b).

I Then G =< x , y | xc = x5, yd = y5 > (unknown c , d).

I If q, r ≡ 5 (mod 8) and q is a 4th power mod r but not vice
versa, then G is infinite.

I Idea: pick random words c , d and look at
< x , y | xc = x5, yd = y5 >.

I If the abelianizations of its low index subgroups are all finite
and the sizes of its p-quotients do not stabilize (within range
of computer), then save c , d .
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I If the abelianizations of its low index subgroups are all finite
and the sizes of its p-quotients do not stabilize (within range
of computer), then save c , d .
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An Experiment (Continued)

I We thus obtain some plausible c , d and so plausible G .

I Amazing observation - the G that survive belong to one
special family.

I Conjecture: (1) G has presentation of the form
< x , y | xa = x5, y4 = 1 > (2) Moreover, the orders of
G/Pk(G ) (k = 1, 2, ...) are
22, 25, 28, 211, 214, 216, 220, 224, 230, 236, 244, 252, 264, 276, 293, ..
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Strategy in Infinite Case

I A Golod-Shafarevich (G-S) group is one satisfying
r(G ) ≤ d(G )2/4.

I To show that G is infinite, it’s enough to find a G-S subgroup
of finite index.

I The Virtual Golod-Shafarevich (VGS) Conjecture says that
infinite G always have a G-S subgroup of finite index.

I Strategy to prove G infinite - find family of groups that G
belongs to; find their G-S subgroup; locate the corresponding
field; apply Golod-Shafarevich to it.
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Tame Fontaine-Mazur Conjecture

I Recall this says that no G has an infinite quotient that’s a
subgroup of some GLn(Zp).

I The VGS conjecture implies more generally that every infinite
G has a large action on a locally finite, rooted tree.
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Arboreal Galois Representations

I If T is a locally finite, rooted tree, then a continuous
homomorphism Gal(K/K ) → Aut(T ) is called an arboreal
Galois representation.

I One source of these comes from the extension of the tame
Fontaine-Mazur conjecture.

I Another source comes from Galois action on roots of iterates
of a polynomial.

I In analogy to p-adic Galois representations, we look to
characterize their images and the images of their Frobenius
elements.
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Example (with Rafe Jones)

I Let f = (x + 1)2 − 2 ∈ Q[x ].

I The nth iterate of f has discriminant a 2-power, so the Galois
action on its roots is ramified only at 2 and ∞. (These roots
form the nth level of a tree T .)

I Big Question: Is the union of the splitting fields of all these
iterates the maximal 2-extension of Q unramified outside 2
and ∞?

I Thanks to Klüners and Fieker, we find the Galois groups of
the nth iterates (n = 1, 2, ..., 7), which have orders
21, 23, 26, 211, 222, 243, 286.
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I Thanks to Klüners and Fieker, we find the Galois groups of
the nth iterates (n = 1, 2, ..., 7), which have orders
21, 23, 26, 211, 222, 243, 286.

Nigel Boston and Harris Nover Computing Pro-p Galois Groups



Outline
Introduction

Finite Galois Groups
Infinite Galois Groups
Combining Group Theory and Number Theory Computations

Conjecture

I The Basilica group B =< a, b > is a known subgroup of
Aut(T ) with similar growth.

I Conjecture: The Galois group of the nth iterate over Q(i) is
the subgroup < [a, b], aba > acting on the 2n vertices of T at
level n.

I The closure of < [a, b], aba > is not free.

I The Galois group over Q(i) of the maximal 2-extension
unramified outside 2 and ∞ is free (Markscheitis, 1963).

I Consequence: Answer to the big question is no. (In fact, we
just need that B contains no nonabelian free pro-2 subgroup.)
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