

Computing Prime Harmonic Sums

Eric Bach **Computer Sciences** University of Wisconsin-Madison Madison, WI 53706 USA bach@cs.wisc.edu http://www.cs.wisc.edu/~bach

Jonathan Sorenson Computer Science and Software Engineering **Butler University** Indianapolis, IN 46208 USA sorenson@butler.edu http://www.butler.edu/~sorenson

Overview

We present an algorithm for computing

 $S(x) := \sum_{p \le x} \frac{1}{p}$

using $x^{2/3+o(1)}$ time and $x^{1/3+o(1)}$ space. Our algorithm is based on the Meissel-Lehmer algorithm for computing the prime-counting function $\pi(x)$, which was adapted and improved by Lagarias, Miller, and Odlyzko [2, 6, 7].

A Computation Inspired by Neal Sloane

Neal Sloane asked for the smallest value of x such that S(x) exceeds 4. Mertens's Second Theorem [5, §22.7] states that

$$\sum_{p \le x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right),\tag{2}$$

where

$$B = \gamma + \sum_{p} \left(\log \left(1 - \frac{1}{p} \right) + \frac{1}{p} \right) = 0.26149721 \dots$$

By assuming the Riemann Hypothesis, Schoenfeld [8] proved the following explicit version of (2):

$$\left|\sum \frac{1}{n} - \log \log x - B\right| < \frac{3\log x + 4}{8\pi\sqrt{x}}$$

E. D. F. Meissel

Basic Formulas

Let p_i denote the *i*th prime, and let $\ell(n)$ denote the least prime factor of n. We define

$$\phi(x,a) := \sum_{\substack{n \le x \\ \ell(n) > p_a}} \frac{1}{n}.$$

Let S_k be this same sum, with *n* restricted to precisely *k* prime factors, with $S_0 = 1$, so that

$$\phi(x,a) = S_0 + S_1 + S_2 + S_3 + \cdots$$

Now we set $a := \pi(x^{1/3})$, so that p_a is the largest prime $\leq x^{1/3}$, making $S_k = 0$ for k > 2. Observe that

$$S_1 = \sum_{p \le x} \frac{1}{p} - \sum_{p \le p_a} \frac{1}{p}$$
 and $S_2 = \sum_{\substack{pq \le x \\ p_a .$

This leads us to the following formula for S(x):

$$\sum_{p \le x} \frac{1}{p} = \sum_{p \le p_a} \frac{1}{p} + \phi(x, a) - 1 - \sum_{\substack{pq \le x \\ p_a (1)$$

Algorithm Outline

- 1. The first term in (1) can be computed in $x^{1/3}$ time using a prime sieve. This is the dominant term, asymptotic to $\log \log x$ by (2).
- 2. For $x, a \ge 1$ we have

$$\phi(x, -1) = \phi(x, a) + \frac{1}{p_a} \phi(x/p_a, a - 1)$$

which implies that the second term in (1), $\phi(x, a)$, satisfies the recurrence relation

when $x \ge 13.5$. From this we obtain the estimate that when S(x) first exceeds 4 we have

$$1.80124093... \times 10^{18} < x < 1.80124152... \times 10^{18},$$

the Schoenfeld interval. We computed S(x) for

$$x = 1216720^3 = 1801241484456448000,$$

and then used a precomputed table of sums in the Schoenfeld interval (thereby avoiding interpolation or binary search and multiple evaluations of S(x)) to discover

 $S(1801241230056600467) \leq 3.9999999999999999999966$ and $S(1801241230056600523) \ge 4.00000\ 00000\ 00000\ 00021.$

There are no primes between these two x values.

This computation took roughly one week on two workstations.

Josephine Mitchell

 $\phi(x, a) = \phi(x, a - 1) - \phi(x/p_a, a - 1)/p_a.$

From this, we are able to show

$$\phi(x,a) = \sum_{(m,b) \text{ ordinary}} \frac{\mu(m)}{m} \phi(x/m,b) + \sum_{(m,b) \text{ special}} \frac{\mu(m)}{m} \phi(x/m,b),$$

where (x/m, b) is either ordinary if b = 1 and $m \le x^{1/3}$, or special if $m > x^{1/3}$ (and never both). Using segmented sieving together with a special tree data structure for computing range sums [3], $\phi(x, a)$ can be computed in $x^{2/3+o(1)}$ time and $x^{1/3+o(1)}$ space.

3. The last term in (1) can be rewritten as

$$\sum_{\substack{pq \le x \\ p_a$$

which permits us to evaluate it in $x^{2/3+o(1)}$ time.

Franz Mertens

& Lowell Schoenfeld

References

- [1] R. P. Brent. The first occurence of large gaps between successive primes. Math. Comp., 27(124):959-963, 1973.
- [2] M. Deléglise and J. Rivat. Computing $\pi(x)$: the Meissel, Lehmer, Lagarias, Miller, Odlyzko method. *Math.* Comp., 65(213):235-245, 1996.
- [3] Michael L. Fredman. The complexity of maintaining an array and computing its partial sums. J. Assoc. Comput. Mach., 29(1):250-260, 1982.
- [4] Emil Grosswald. Arithmetical functions with periodic zeros. Acta Arith., 28(1):1–21, 1975/76.
- [5] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1979.
- [6] J. C. Lagarias, V. S. Miller, and A. M. Odlyzko. Computing $\pi(x)$: the Meissel-Lehmer method. *Math. Comp.*, 44(170):537–560, 1985.
- [7] J. C. Lagarias and A. M. Odlyzko. Computing $\pi(x)$: an analytic method. J. Algorithms, 8(2):173–191, 1987.
- [8] L. Schoenfeld. Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II. *Math. Comp.*, 30(134):337– 360, 1976.
- [9] D. Suryanarayana. The greatest divisor of n which is prime to k. Math. Student, 37:147–157, 1969.