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Overview

In this poster we will present an algorithm for computing S(x) :=
∑

p≤x
1/p using x2/3+o(1) time and x1/3+o(1) space.

Our algorithm is based on the Meissel-Lehmer algorithm for computing the prime-counting function π(x), which was
adapted and improved by Lagarias, Miller, and Odlyzko [2, 6, 7].

Algorithm Outline

Let pi denote the ith prime, and let pa be the largest prime ≤ x1/3 (that is, a = π(x1/3)). Then we can show

S(x) :=
∑
p≤x

1

p
=

∑
p≤pa

1

p
+ φ(x, a)− 1−

∑
pq≤x

pa<p≤q

1

pq
, (1)

where φ(x, a) :=
∑

n≤x,`(n)>pa
(1/n), and `(n) is the least prime factor of n.

1. The first term in (1) can be computed in x1/3 time using a prime sieve. This is the dominant term, asymptotic
to log log x.

2. The last term can be rewritten as ∑
pa<p≤

√
x

1

p

 ∑
q≤x/p

1

q
−

∑
q≤p

1

q
+

1

p


which permits us to evaluate it in x2/3+o(1) time.

3. The second term, φ(x, a), satisfies the recurrence relation φ(x, a) = φ(x, a − 1) − φ(x/pa, a − 1)/pa . From this,
we show

φ(x, a) =
∑

(m,b) ordinary

µ(m)

m
φ(x/m, b) +

∑
(m,b) special

µ(m)

m
φ(x/m, b),

where (x/m, b) is either ordinary if b = 1 and m ≤ x1/3, or special if m > x1/3 (and never both). Using segmented
sieving together with a special tree datastructure for computing range sums [3], φ(x, a) can be computed in
x2/3+o(1) time and x1/3+o(1) space.

A Computation

We used our algorithm to find the smallest value x for which S(x) exceeds 4. Using an explicit error estimate due to
Schoenfeld [11] based on the Riemann Hypothesis, we have the estimate

1.80124093...× 1018 < x < 1.80124152...× 1018.

We computed S(x) for x = 12167203 = 1801241484456448000, and then used a precomputed table of sums in the
Schoenfeld interval (thereby avoiding interpolation or binary search and multiple evaluations of S(x)) to discover

S(1801241230056600467) ≤ 3.99999 99999 99999 99966 and

S(1801241230056600523) ≥ 4.00000 00000 00000 00021.

There are no primes between these two x values. This computation took roughly 1 week on two workstations.
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