The Carmichael numbers up to 10²⁰ **Richard G.E. Pinch**

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K.

Introduction

We extend our previous computations to show that there are 8220777 Carmichael numbers up to 10^{20} . As before, the numbers were generated by a back-tracking search for possible prime factorisations together with a "large prime variation". We present further statistics on the distribution of Carmichael numbers.

Organisation of the search

We used improved versions of strategies first described in [2].

The principal search was a depth-first back-tracking search over possible sequences of primes factors p_1, \ldots, p_d . Put $P_r = \prod_{i=1}^r p_i$, $Q_r = \prod_{i=r+1}^d p_i$ and $L_r = \operatorname{lcm} \{p_i - 1 : i = 1, \dots, r\}$. We find that Q_r must satisfy the congruence $N = P_r Q_r \equiv 1 \mod L_r$ and so in particular $Q_d = p_d$ must satisfy a congruence modulo L_{d-1} : further $p_d - 1$ must be a factor of $P_{d-1} - 1$. We modified this to terminate the search early at some level r if the modulus L_r is large enough to limit the possible values of Q_r , which may then be factorised directly.

We also employed the variant based on proposition 2 of [2] which determines the finitely many possible pairs (p_{d-1}, p_d) from P_{d-2} . In practice this was useful only when d = 3 allowing us to determine the complete list of Carmichael numbers with three prime factors up to 10^{20} .

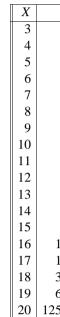
A large prime variation

Finally we employed a different search over large values of p_d , in the range $2.10^6 < p_d < 10^{9.5}$, using the property that $P_{d-1} \equiv 1 \mod (p_d - 1)$.

If q is a prime in this range, we let P run through the arithmetic progression $P \equiv 1 \mod q - 1$ in the range q < P < X/q where $X = 10^{20}$. We first check whether N = Pq satisfies $2^N \equiv 2 \mod N$: it is sufficient to test whether $2^N \equiv 2 \mod P$ since the congruence modulo q is necessarily satisfied. If this condition is satisfied we factorise *P* and test whether $N \equiv 1 \mod \lambda(N)$. The approximate time taken for $X^t \le q < X^{1/2}$ is

$$\sum_{X^t < q < X^{1/2}} \frac{X}{q^2} \approx X^{1-t}.$$

 $\frac{n}{C(n)}$



In Table 3 and Figure 1 we tabulate the function k(X), defined by Pomerance, Selfridge and Wagstaff [3] by

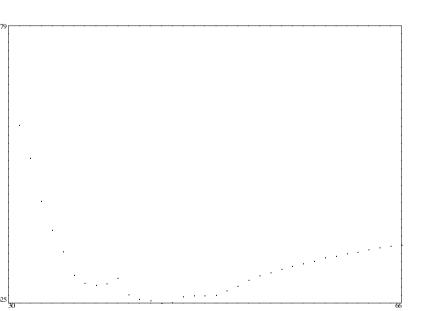
rgep@chalcedon.demon.co.uk

Statistics

12	13	14	15	16	17	1	18	19		20			
8241	19279	44706	105212 2	246683	585355	140164	44 338	31806	822	20777			
Distribution of Carmichael numbers up to 10^{19} .													
												1	n
3	4	5		6	7	8	9		10	11	12	total	-
1	0	0		0	0	0	0		0	0	0	1	
7	0	0		0	0	0	0		0	0	0	7	
12	4	0		0	0	0	0		0	0	0	16	
23	19	1		0	0	0	0		0	0	0	43	
47	55	3		0	0	0	0		0	0	0	105	
84	144	27		0	0	0	0		0	0	0	255	
172	314	146	1-	4	0	0	0		0	0	0	646	
335	619	492	9	9	2	0	0		0	0	0	1547	
590	1179	1336	45	9	41	0	0		0	0	0	3605	
1000	2102	3156	171	4 2	62	7	0		0	0	0	8241	
1858	3639	7082	527	0 13	40	89	1		0	0	0	19279	
3284	6042	14938	1440	1 53	59	655	27		0	0	0	44706	
6083	9938	29282	3690	7 192	10	3622	170		0	0	0	105212	
10816	16202	55012		6 601	50 1	6348	1436		23	0	0	246683	
19539	25758	100707				3635	8835		40	1	0	585355	
35586	40685	178063					44993	30	58	49	0	1401644	
65309	63343	306310					96391	207		576	2	3381806	
250625	98253	514381	168174				62963	1142		5804	56	8220777	
Values of $C(X)$ and $C(d,X)$ for $d \le 10$ and X in powers of 10 up to													
	J $() J $ $ I$ J J $ I$												

 10^{20} .

We have shown that there are 8220777 Carmichael numbers up to 10^{20} , all with at most 12 prime factors. We let C(X) denote the number of Carmichael numbers less than X and C(d, X) denote the number with exactly d prime factors. Table 1 gives the values of C(X) and Table 2 the values of C(d,X) for X in powers of 10 up to 10^{20} .



k(X) versus $\log_2 X$.

 $C(X) = X \exp\left(-k(X)\frac{\log \log \log \log X}{\log \log X}\right)$

n	$\log C(10^n) / (n \log 10)$	$C(10^n)/C(10^{n-1})$	k(10)
4	0.21127	7.000	2.195
5	0.24082	2.286	2.076
6	0.27224	2.688	1.979
7	0.28874	2.441	1.933
8	0.30082	2.429	1.904
9	0.31225	2.533	1.879
10	0.31895	2.396	1.868
11	0.32336	2.330	1.864
12	0.32633	2.286	1.863
13	0.32962	2.339	1.862
14	0.33217	2.319	1.862
15	0.33480	2.353	1.863
16	0.33700	2.335	1.864
17	0.33926	2.373	1.864
18	0.34148	2.394	1.865
19	0.34363	2.413	1.865
20	0.34574	2.431	1.865

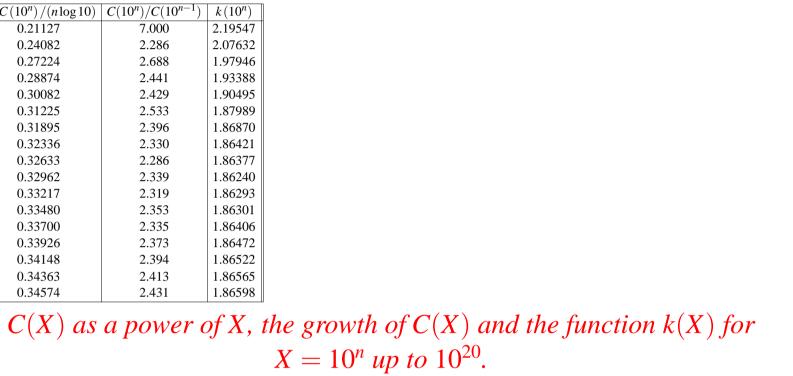
Conclusion

We consider that there is no clear evidence that k(x) approaches any limit.

References

- Number Theory and Applications.
- (1993), 381–391, Lehmer memorial issue.
- (1981), 587–593.
- [5] Applications, pp. 136–161.

They proved that $\liminf k \ge 1$ and suggested that $\limsup k$ might be 2, although they also observed that within the range of their tables k(X) is decreasing: Pomerance [4],[5] gave a heuristic argument suggesting that $\lim k = 1$. The decrease in k is reversed between 10^{13} and 10^{14} : see Figure 1. We find no clear support from our computations for any conjecture on a limiting value of k.



[1] R.A. Mollin (ed.), *Number theory and its applications*, Dordrecht, Kluwer Academic, 1989, Proceedings of the NATO Advanced Study Institute on

[2] Richard G.E. Pinch, *The Carmichael numbers up to* 10¹⁵, Math. Comp. **61**

[3] C. Pomerance, J.L. Selfridge, and S.S. Wagstaff jr, *The pseudoprimes up to* 25.10⁹, Math. Comp. **35** (1980), no. 151, 1003–1026.

[4] Carl Pomerance, On the distribution of pseudoprimes, Math. Comp. 37

, Two methods in elementary analytic number theory, in Mollin [1], Proceedings of the NATO Advanced Study Institute on Number Theory and