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Abstract

Basic Notions
●  Hyperelliptic Curve

●  Divisor Class Group
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Algorithm 1 Divisor Class Halving (HLV)

INPUT: Divisor class D = [u, v], where u = x2 + u1x + u0, v = v1x + v0 and the
pre-computed values f2

3 ,
√

f0

OUTPUT: Halved divisor class E = [u′, v′] such that D = 2E

1: q1 ←
√

u1, q2 ← 1/q1, q3 ← q2
2, q4 ← u0q3, q5 ←

√
q2 ! 1I, 1M, 2SR, 1S

2: q6 ←
√

q4, c← u1(q6 + q5 + f3) ! 1SR, 1M

3: t′ ←
(d−3)/2∑

i=0
c2(2i+1)

! 1HT

4: u′1 ← t′q2, t← u′21 , s1 ← v0 + (q1 + t + f3)u0 ! 2M, 1S
5: u′0 ←

√
s1, b← Trace(u′1(u′0 + t + f3)) ! 1M, 1S, 1TR

6: if b = 0 then
7: v′0 ← q5u′0 +

√
f0 ! 1M

8: else
9: t← t + q3, u′1 ← u′1 + q2

10: u′0 ← u′0 + q6, v′0 ← q5u′0 +
√

f0 ! 1M
11: end if
12: v′1 ←

√
v1 + q1

(
(q1 + t + f3)(t + f3) + u1

)
+ f2 ! 2M, 1SR

13: return [x2 + u′1x + u′0, v′1x + v′0] ! Total: 1I, 8M, 4SR, 3S, 1HT, 1TR
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(P1 + P2 − 2∞) + (Q1 + Q2 − 2∞) = R1 + R2 − 2∞

Doubling of Divisor Classes (affine)

Algorithm 1 Double-and-Add
INPUT: An element x of G and an integer n = (nl−1 . . . n0)2
OUTPUT: The element n · x in G

1: y ← 1 and i← l − 1
2: while i ≥ 0
3: y ← 2 · y
4: if ni = 1 then y ← y + x
5: i← i− 1
6: return y

In Recent coordinates a divisor class of the Jacobian of
a HEC is written as [U1,U0,V1,V0,Z] which represents
the affine divisor class [x2 + U1/Z x + U0/Z,V1/Z2 x +
V0/Z2]. These are so called weighted coordinates. The
variables Ui have weight 1 and the Vi have weight 2.

Let C be a hyperelliptic curve of genus g over a field
K. The group of degree zero divisors of C is denoted
by Div0

C. The quotient group of Div0
C by the group of

principal divisors of C is called the divisor class group
of C and is denoted by Pic0

C. It is also called the Picard
group of C.

For a pictorial description see below.

In projective coordinates a divisor class of the Jacobian
of a HEC is written as [U1,U0,V1,V0,Z] which represents
the affine divisor class [x2+U1/Z x+U0/Z,V1/Z x+V0/Z].

Projective Coordinates Recent Coordinates

How to perform the group operation in the divisor class group?

●
 Use Cantors algorithm (see picture) to implement the addtion of 

 divisor classes.

● 
 Disadvantage: Cantor is to slow for efficient implementations!

● 
 Solution: Consider additions and doublings separately to make

 them faster

This is a graphical description 
how to perform the addtion of 
two divisor classes (each repre-
sented by two affine points on 
the hyperelliptic curve) using 
Cantors general algorithm.

Scalar multiplication is the most important operation in DL based 
cryptosystems!

That operation is most often implemented using algorithms like Double-
and-Add or windowing methods.

Implementations that use a Double-and-Add algorithm need a fast 
double operation!

Algorithm 1 Divisor Class Doubling in Recent Coordinates
INPUT: Divisor class D = [u, v, z], where u = x2 + u1x + u0, v = v1x + v0

OUTPUT: Doubled divisor class E = [u′, v′, z′] such that E = 2D

1: z2 ← z2, z4 ← z2
2 , t1← f0z4 + v2

0

2: t2 ← u2
1 + f3z2

3: a1 ← u2
0, a2 ← a1z, a3 ← a1z4

4: q1 ← (t2a2 + u1t1)2 + t1a3

5: q2 ← t21, q3 ← q2
2, q4 ← a1z2

6: q5 ← t1t2, q6 ← (a3 + q5)t1
7: u′

0 ← q1

8: u′
1 ← a3q4

9: v′
0 ← q6q1 + q3q4

10: v′
1 ← q4(q5q6 + a2

3t1) + q3(f2z4 + v2
1)

11: z′ ← q2z2

12: return [x2 + u′
1x + u′

0, v′
1x + v′

0]

Let K be a field and let K be the algebraic closure of K.
A curve C, given by an equation of the form

C : y2 +h(x)y = f (x), (1)

where h ∈ K[x] is a polynomial of degree at most g
and f ∈ K[x] is a monic polynomial of degree 2g + 1, is
called a hyperelliptic curve of genus g over K if no point
on the curve over K satisfies both partial derivatives
2y+h = 0 and f ′ −h′y = 0.

The last condition ensures that the curve is nonsingular.
In our case we concentrate on hyperelliptic curves of
genus 2 over finite fields of characteristic 2. In this case
we need a non-zero polynomial h in the curve equation.

Since hyperelliptic curve cryptosystems (HECC) gain
similar attention as their elliptic counterparts, it is very
interesting to investigate, whether ideas and methods
can be transferred from the elliptic to the hyperellip-
tic case. The most important operation used by el-
liptic curves cryptosystems (ECC) is scalar multiplica-
tion which is composed of point addition, doubling and
sometimes halving. These operations are well inves-
tigated and it is likely that the present formulae are
the most efficient ones. For HECC explicit formulae
for addition, doubling and hence scalar multiplication
of divisor classes are also known [1,4]. In addition to
that we present an efficient halving algorithm for divisor
classes.

Let E = [x2+u′
1x+u′

0, v′
1x+v′

0] be a divisor class. We can
compute the doubled divisor class D = 2E = [x2 +u1x +
u0, v1x + v0] using Lange and Steven’s explicit formulae
(see [4]):
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For hardware implementations one needs inversionsfree doubling formulae!

Solution: Use projective or recent coordinates instead of affine coordinates

Advantage: This allows fast and inversionsfree doubling of divisor classes!


