
An O(M(n) log n) algorithm for the Jacobi
symbol

Paul Zimmermann
(joint work with Richard P. Brent)

-IX
20 July 2010

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Still possible to submit a contribution to the rump session
(today after 19PM):

announcements of recent results: factoring is in P

announcements of future conferences: LoriaCrypt 2011

funny talks related to the topics of ANTS-IX: disproving
Conjecture 3 p128, reporting an error in Table 2 p335,
re-pairing the volcano...

Send me name of speaker + title + 3-line abstract.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Motivation
From: Galbraith Steven
Date: Fri, Apr 17, 2009 at 4:26 PM
To: Paul Zimmermann, Pierrick Gaudry

Hi Paul and Pierrick,

Sorry to bother you.

The usual algorithm to compute the Legendre (or Jacobi) symb ol
is closely related to Euclid’s algorithm. There are variant s of
Euclid for n-bit integers which run in O(M(n) \log(n)) bit op erations.
Hence it is natural to expect a O(M(n) \log(n)) algorithm for
Legendre symbols.

I don’t see this statement anywhere in the literature. Is thi s:

(a) in the literature somewhere
(b) so obvious no-one ever wrote it down
(c) false due to some subtle reason.

Thanks for your help.

Regards
Steven

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

(b) so obvious no-one ever wrote it down

This is what we first thought.

However we soon realized it was not so easy...

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Magma V2.16-10 on 2.83Ghz Core 2:
> a:=3ˆ209590; b:=5ˆ143067;
> time c := Gcd(a,b);
Time: 0.080
> time d := JacobiSymbol(a,b);
Time: 2.390

Sage 4.4.4 on 2.83Ghz Core 2:
sage: a=3ˆ209590; b=5ˆ143067
sage: a.ndigits(), b.ndigits()
(100000, 100000)
sage: %timeit a.gcd(b)
5 loops, best of 3: 49.9 ms per loop
sage: %timeit a.jacobi(b)
5 loops, best of 3: 2.04 s per loop

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

GMP 5.0.1 on 2.83Ghz Core 2:
patate% ./speed -s 5190 mpn_gcd mpz_jacobi

mpn_gcd mpz_jacobi
5190 #0.040993000 1.577760000

GP/PARI 2.4.3:
? a=3ˆ209590; b=5ˆ143067;
? gcd(a,b);
time = 41 ms.
? kronecker(a,b)

*** at top-level: kronecker(a,b)

*** ˆ--------------

*** kronecker: the PARI stack overflows !
current stack size: 8000000 (7.629 Mbytes)

break> allocatemem()

*** new stack size = 4096000000 (3906.250 Mbytes).
? kronecker(a,b)
time = 4,893 ms.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

(a) in the literature somewhere

Two MSB (Most Signific Bits first) algorithms:

“Algorithmic Number Theory” from Bach and Shallit,
solution of Exercise 5.52 (Gauss, Bachmann) [sketch];

a different algorithm mentioned by Schönhage in his “TP
book”, but without details.

As far as we know, no subquadratic implementation exists,
except that of Schönhage in the TP language.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

From Arnold Schoenhage <schoe@cs.uni-bonn.de> 20091126 v ia email:

Excerpt from my old file IGCDOC (1987):

(7.1) x_{j-1}= q_j * x_j + x_{j+1}, where x_0=x, x_1=y, x_k=x_{k+1}=1.

(7.2) r_j == x_j mod 4 with 0 \le r_j < 4

Theorem 7.1. With regard to the quantities in (7.1) and (7.2) ,
------------ the Jacobi symbol satisfies the following rec urrence
relations, valid for odd values of x_{j-1} > 1. If x_j is odd, t hen

(7.3) (x_j|x_{j-1}) = (x_{j+1}|x_j) * s(r_{j-1},r_j),

where s(1,1) = s(1,3) = s(3,1)= 1, s(3,3)= -1.

If x_j is even, then x_{j+1} must be odd, and in this case one ha s

/ (x_{j+2}|x_{j+1}), if r_j= 0,
(7.4) (x_j|x_j-1)= <

\ (x_{j+2}|x_{j+1}) * t(r_{j+1}, q_j), if r_j= 2,

where t(r,q) = / -1 for q == 2 or q == r mod 4,
\ +1 otherwise.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

(c) false due to some subtle reason

We’ll try to show this is not so!

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Plan of the talk

The Binary (Generalized) Division

A Cubic LSB Algorithm

A Quadratic LSB Algorithm

A Subquadratic LSB Algorithm

Implementation and Timings

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

The Jacobi symbol

(
b
a

)

or (b|a) is defined for integers a, b, with a odd positive.

(b|a) = (b mod a|a)

(b|a) = (−1)(a−1)(b−1)/4(a|b) for b odd positive

(bc|a) = (b|a)(c|a)

(2|a) = (−1)(a
2
−1)/8

(−1|a) = (−1)(a−1)/2

(b|a) = 0 if (a, b) 6= 1

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

In this talk we propose a LSB (Least Signific Bit)
algorithm, that can be easily implemented in O(M(n) log n) by
modifying a LSB gcd.

We assume a is odd positive, b is even positive.

• if b is negative, use (b|a) = (−1)(a−1)/2(−b|a).
• if b is odd, use (b|a) = (b + a|a).

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

The Binary Division

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

The Binary Division

A binary recursive gcd algorithm, Stehlé and Z., ANTS VI,
2004.

Classical (MSB) division forces 0’s in the MSBs:

decimal binary
935 1110100111
714 1011001010
221 0011011101
51 0000110011
17 0000010001

0 0000000000

GCD = (10001)2 = 17

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Binary Division

a = 935 = (1110100111)2

b = 714 = (1011001010)2

divide b by the largest possible power of two:

b/2 = 357 = (101100101)2

now choose between a + b/2 and a − b/2 the one with
most trailing zeroes:

a + b/2 = 1292 = (10100001100)2

a − b/2 = 578 = (1001000010)2

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Binary Division: Another Example

a = 935 = (1110100111)2

b = 716 = (1011001100)2

a + b/4 = 1114 = (10001011010)2

a − b/4 = 756 = (1011110100)2

a + 3b/4 = 1472 = (10111000000)2

a − 3b/4 = 398 = (110001110)2

Here we choose a + 3b/4 as next term.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Theory

a, b ∈ Z with j := ν2(b) − ν2(a) > 0

There is a unique |q| < 2j such that ν2(b) < ν2(r) and:

r = a + q2−jb

q is the binary quotient of a by b
r is the binary remainder of a by b

Rationale: if a, b have both n bits, b′ = 2−jb has n − j bits, and
qb′ has about n bits, thus r has about the same bit-size as a,
but at least j + 1 more zeros in the LSB.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Computation

j = ν2(b) − ν2(a) > 0

q ≡ −a/(b/2j) mod 2j+1 (centered)

Binary remainder sequence ν2(a) < ν2(b) < ν2(r) < · · ·

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Binary Division (and GCD)

Binary (LSB) division forces 0’s in the LSBs:

935 1110100111
714 1011001010

1292 10100001100
1360 10101010000
1632 11001100000
2176 100010000000

0 000000000000

GCD = (10001)2 = 17

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Adv ages of the Binary Division:

⊕ simpler to compute (division mod 2j+1 instead of MSB
division);

⊕ no “repair step” in the subquadratic GCD (see
however Möller, Math. Comp., 2008);

⊕ an average reduction of two LSB bits per iteration;
⊖ an average increase of 0.05 MSB bit per iteration

(analyzed precisely by Daireaux, Maume-Deschamps
and Vallée, DMTCS, 2005).

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Using the Binary Division for the Jacobi Symbol

It seems easy to adapt, using b′ = b/2j odd:

(b|a) = (−1)j(a2
−1)/8(b′|a)

(b′|a) = (−1)(a−1)(b′
−1)/4(a|b′)

(a|b′) = (a + qb′|b′) = (r |b′)

(r |b′) = (−1)j(b′2
−1)/8(r/2j |b′)

However r can be negative!
Example: 935, 738, 1304,−240, 1184,−832, 768,−1024, 0.

Incompatible with definition of Jacobi symbol, which requires a
odd positive.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

A Cubic LSB Algorithm

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Binary Division with Positive Quotient

Instead of taking q = a/(b/2j) in [−2j , 2j], take it in [0, 2j+1].

Since q > 0, if a, b > 0, all terms are non-negative:

r = a + q2−jb

Stopping GCD criterion: a/2ν2(a) = b/2ν2(b).

Example: 935, 714 = 357 · 2, 1292 = 323 · 22, 1360 = 85 · 24,
1632 = 51 · 25, 2176 = 17 · 27, 4352 = 17 · 28.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

A Cubic LSB Algorithm

Algorithm CubicBinaryJacobi.
Input: a, b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)

1: s ← 0
2: j ← ν(b)
3: while 2ja 6= b do
4: b′ ← b/2j

5: (q, r) ← BinaryDividePos(a, b)

6: s ← (s + j(a2
−1)
8 + (a−1)(b′

−1)
4 + j(b′2

−1)
8) mod 2

7: (a, b) ← (b′, r/2j)
8: j ← ν(b)

9: if a = 1 then return (−1)s else return 0
(lines in red are added to the GCD LSB-algorithm)

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Cost of the Cubic Algorithm

Let n be the bit-size of the inputs a, b.

Each iteration costs O(n) (unless j is large, but this is unlikely,
and in this case (a, b) decrease even more).

The number of iterations is O(n2) (see below).

Thus the total cost is O(n3) (probably less, see below).

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

A Quadratic LSB Algorithm

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Lemma

The quantity a + 2b is non-increasing in CubicBinaryJacobi.

Proof.

At each iteration, a + 2b becomes:

2a
2j + (1 +

2q
2j)

b
2j .

If j ≥ 2, a + 2b is multiplied by a
factor at most 9/16: good iteration.
If j = 1 and q = 1, a + 2b de-
creases, but with a factor that can
be arbitrarily close to 1: bad itera-
tion.
If j = 1 and q = 3, a + 2b remains
unchanged: ugly iteration.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Examples

Good iteration: a = 9, b = 4 gives j = 2, q = 7, b′ = 1, r/2j = 4,
a + 2b = 17 becomes 9.

Bad iteration: a = 9, b = 6 gives b′ = 3, r/2j = 6, a + 2b = 21
becomes 15.

Ugly iteration: a = 9, b = 10 gives b′ = 5, r/2j = 12,
a + 2b = 29 remains 29.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Lemma

If µ = ν(a − b/2), there are exactly ⌊µ/2⌋ ugly iterations
starting from (a, b), followed by a good iteration if µ is even,
otherwise by a bad iteration.

Example 1: a − b/2 = 64 = 26

(85, 42) →
︸︷︷︸

ugly

(21, 74) →
︸︷︷︸

ugly

(37, 66) →
︸︷︷︸

ugly

(33, 68) →
︸︷︷︸

good

(34, 38) · · ·

Example 2: a − b/2 = 128 = 27

(149, 42) →
︸︷︷︸

ugly

(21, 106) →
︸︷︷︸

ugly

(53, 90) →
︸︷︷︸

ugly

(45, 94) →
︸︷︷︸

bad

(47, 46) · · ·

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

A Quadratic LSB Algorithm

Main idea: from the 2-valuation of a − b/2, compute the
number m > 0 of consecutive ugly iterations, and apply them all
at once: harmless iteration.

The Jacobi symbol can also be easily updated for m
consecutive ugly iterations (see the proceedings).

Now we have only good (G), bad (B), or harmless (H) iterations,
where HH is forbidden.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Algorithm QuadraticBinaryJacobi
1: s ← 0, j ← ν(b), b′ ← b/2j

2: while a 6= b′ do
3: s ← (s + j(a2 − 1)/8) mod 2
4: (q, r) ← BinaryDividePos(a, b)
5: if (j , q) = (1, 3) then ⊲ harmless iteration
6: d ← a − b′

7: m ← ν(d) div 2
8: c ← (d − (−1)md/4m)/5
9: s ← (s + m(a − 1)/2) mod 2

10: (a, b) ← (a − 4c, b + 2c)
11: else ⊲ good or bad iteration
12: s ← (s + (a − 1)(b′ − 1)/4) mod 2
13: (a, b) ← (b′, r/2j)

14: s ← (s + j(a2 − 1)/8) mod 2, j ← ν(b), b′ ← b/2j

15: if a = 1 then return (−1)s else return 0

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Analysis of the Quadratic Algorithm

Lemma

Algorithm QuadraticBinaryJacobi needs O(n) iterations.

Proof.

Consider a block of three iterations (G, B, or H):

G multiplies a + 2b by at most 9/16 < 5/8;

HH is forbidden, thus we have either HB = UmB or BB;

UB multiplies a + 2b by at most 5/8, and Um−1 leaves it
unchanged;

BB multiplies a + 2b by at most 1/2 < 5/8.

Thus each three iterations multiply a + 2b by at most 5/8, thus
the number of iterations if cn + O(1), where
c = 3/ log2(8/5) ≈ 4.4243.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

A Subquadratic LSB Algorithm
Cf Algorithm 3.1 page 90 in the proceedings.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Implementation and Timings

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Experimental Results for Large Numbers

Timings on a 2.83Ghz Core 2 with GMP 4.3.1, with inputs of
one million 64-bit words.

GMP’s fast gcd takes 45.8s.

An implementation of the (fast) binary gcd takes 48.3s.

Our implementation FastBinaryJacobi takes 83.1s.

Our implementation is faster than GMP’s O(n2) code up from
535 words (about 10,000 decimal digits).

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

mpz_jacobi
FastBinaryJacobi

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

Concluding Remarks

first complete (description + code) subquadratic Jacobi
algorithm

first LSB algorithm for the problem

does not need to compute the (MSB) quotient sequence

we can use the “cubic” algorithm with a centered quotient.
Moreover we can choose q ± 2j+1 ∈ [−2j+1, 2j+1] such that
bq/2j has sign opposite to a. We then gain on average
2.19 bits per iteration, against 1.95 for the centered
quotient, 1.35 for the positive quotient, and 1.42 for Stein’s
“binary gcd”.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

GMP code available from:
http://www.loria.fr/ ˜ zimmerma/papers/#jacobi

Thanks to:

Steven Galbraith for asking the original question;

Damien Stehlé for suggesting using the LSB algorithm;

Arnold Schönhage for his comments and pointers to earlier
work;

the anonymous reviewer who took the time to
implement and try our algorithm:

The new method is very easy to implement. In
fact, I implemented it in Magma myself, and my
non-optimised version was already faster than
whatever Magma uses as standard algorithm, for
reasonable inputs.

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol

http://www.loria.fr/~zimmerma/papers/#jacobi

