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Overview

The space of positive definite n-ary Hermitian forms over a number
field F forms an open cone in a real vector space. There is a
natural decomposition of this cone into polyhedral cones
corresponding to the facets of the Voronöı polyhedron.

We investigate this space in the case where n = 2 and F is an
imaginary quadratic field, yielding tessellations of hyperbolic
3-space. As an application, we use the tessellation to get
information about the arithmetic group GL2(OF ).



Applications and related work

1. Group presentations

2. Group (co)-homology

3. Hecke operators acting on Bianchi modular forms.

Grunewald, Elstrodt, Mennicke, Mendoza, Schwermer, Vogtmann,
Flöge, Cremona and students, Swan, Riley, Rahm-Fuchs, Sengün.



Review of the rational case

n = 2, F = Q
Every binary quadratic form can be represented by a symmetric
2× 2 real matrix. Let C be the 3-dimensional open cone of
positive definite quadratic forms.

Figure: Cone of positive definite forms.



Review of the rational case

Voronöı polyhedron

The Voronöı polyhedron Π is the closed convex hull in C̄ of

{vv t : v ∈ Z2 \ 0}.



Review of the rational case

Tessellation by ideal triangles

Π is an infinite polyhedron whose faces are triangles.

Figure: Trace = 1 slice



Review of the rational case

Tessellation by ideal triangles

This tessellation descends to give tessellation of h by ideal
triangles.

Figure: Tessellation of h by ideal triangles.



Hermitian forms over F

n = 2, F = imaginary quadratic field

Let V be the 4 dimensional real vector space of Hermitian 2× 2
matrices.

1. The positive definite Hermitian matrices forms an open cone
C ⊂ V .

2. GL2(OF ) acts on C by

γ · A = γAγ∗.



Ideal hyperbolic polytopes

We can identify C/H with 3-dimensional hyperbolic space H3.
H3 = C× R>0 is the analogue of h, the complex upper half-plane.

The Voronöı polyhedron Π is the unbounded polyhedron gotten by
taking the convex hull in C̄ of

{vv∗ : v ∈ O2
F \ 0}.



Ideal hyperbolic polytopes

Cusps

The points vv∗ ∈ C correspond to ideal points (cusps), which are
the points F ∪∞. The facets of Π descend to a tessellation of H3

by ideal polytopes.



Hermitian forms over F

For A ∈ C , The minimum of A is

m(A) = inf
v∈O2

F \{0}
v∗Av .

A vector v ∈ O2
F is minimal vector for A if v∗Av = m(A). The set

of minimal vectors for A is denoted M(A).

A Hermitian form over F is perfect if it is uniquely determined by
M(A) and m(A).
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Voronöı polyhedron

Let I be a facet of the Voronöı polyhedron with vertices VI . There
exists a unique perfect form φI with m(φI ) = 1 such that

{vv∗ : v ∈ M(φI )} = VI .



Voronöı polyhedron

There is an algorithm to compute the GL2(OF )-conjugacy classes
of perfect forms given the input of an initial perfect form.

We search for a perfect form by looking in the 1-parameter family
of forms

{φ : m(φ) = 1 and {e1, e2, e1 + e2} ⊆ M(φ)}.

Once an initial form is found, the GL2(OF )-classes are found by
“flipping across facets”.
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Ideal polytope data

Table: Combinatorial types of ideal polytopes that occur in this range.

polytope F -vector picture

tetrahedron [4, 6, 4]

octahedron [6, 12, 8]

cuboctahedron [12, 24, 14]

triangular prism [6, 9, 5]

hexagonal cap [9, 15, 8]

square pyramid [5, 8, 5]

truncated tetrahedron [12, 18, 8]

triangular dipyramid [5, 9, 6]



Ideal polytope data

Table: Voronöı ideal polytopes for class number 1.

hF d

1 −1 0 1 0 0 0 0 0 0
1 −2 0 0 1 0 0 0 0 0
1 −3 1 0 0 0 0 0 0 0
1 −7 0 0 0 1 0 0 0 0
1 −11 0 0 0 0 0 0 1 0
1 −19 0 0 1 1 0 0 0 0
1 −43 0 0 0 2 1 0 1 0
1 −67 0 1 0 2 1 2 1 0
1 −163 11 0 1 8 2 3 0 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 2.

hF d

2 −5 0 0 0 2 0 0 0 0
2 −6 0 0 0 0 1 0 1 0
2 −10 0 1 0 1 0 2 0 0
2 −13 1 0 0 3 1 1 0 0
2 −15 1 1 0 0 0 0 0 0
2 −22 5 0 1 4 0 2 0 0
2 −35 3 4 0 1 0 2 0 0
2 −37 10 0 0 8 1 8 0 0
2 −51 1 0 1 2 1 0 1 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 2.

hF d

2 −58 47 0 0 7 2 6 0 0
2 −91 5 1 0 5 0 3 0 0
2 −115 3 1 0 5 2 4 0 0
2 −123 1 1 1 6 3 3 1 0
2 −187 18 1 1 4 1 9 1 0
2 −235 13 1 0 12 4 11 0 0
2 −267 24 1 1 13 5 10 1 0
2 −403 66 1 0 16 2 20 0 2
2 −427 65 2 0 19 4 24 0 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 3.

hF d

3 −23 0 1 0 1 0 1 0 0
3 −31 0 0 0 3 0 1 0 0
3 −59 0 1 1 3 0 2 0 0
3 −83 6 0 0 2 2 1 1 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 4.

hF d

4 −14 5 0 0 3 0 1 0 0
4 −17 5 0 0 2 1 3 1 0
4 −21 8 2 0 2 1 4 0 0
4 −30 6 0 0 6 4 4 0 0
4 −33 9 0 1 8 1 6 1 0
4 −34 20 0 0 3 1 6 1 0
4 −39 1 0 0 3 1 1 0 0
4 −46 32 1 0 5 0 9 0 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 4.

hF d

4 −55 5 1 0 2 0 2 0 0
4 −57 33 1 0 10 3 14 2 0
4 −73 57 1 1 13 1 14 0 2
4 −78 69 1 0 11 4 18 0 0
4 −82 92 0 0 8 3 11 1 0
4 −85 56 0 0 17 0 28 0 0
4 −93 79 1 0 20 7 21 0 0
4 −97 95 0 1 19 3 19 0 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 5 and 6.

hF d

5 −47 5 0 0 1 1 2 0 0
5 −79 9 0 0 5 0 4 0 0

6 −26 18 1 0 2 1 4 0 0
6 −29 15 0 0 6 0 6 0 0
6 −38 33 1 0 2 1 6 1 0
6 −53 45 0 0 7 2 13 0 0
6 −61 41 1 0 11 1 16 0 0
6 −87 6 0 0 6 2 3 0 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 7 and 8.

hF d

7 −71 7 1 0 4 0 4 0 0

8 −41 31 0 1 9 0 8 0 0
8 −62 81 0 0 7 2 7 0 0
8 −65 69 2 0 9 0 19 0 0
8 −66 67 1 1 9 4 12 1 0
8 −69 51 2 0 15 2 21 0 0
8 −77 81 1 0 9 2 26 0 0
8 −94 125 1 0 10 2 17 0 0
8 −95 12 0 0 4 0 9 0 0



Ideal polytope data

Table: Voronöı ideal polytopes for class number 10 and 12.

hF d

10 −74 105 1 0 9 1 12 0 0
10 −86 130 0 0 9 1 18 1 0

12 −89 136 0 0 14 1 21 1 0



Group presentation from topology

A general result of Macbeath and Weil gives the following.

Theorem
Suppose a space X is acted upon by a group of homeomorphisms
Γ. Let U ⊂ X be an open subset, and let Σ ⊂ Γ denote the set

Σ = {g ∈ Γ : g · U ∩ U 6= ∅}.

Let W ⊂ Σ× Σ be the set

W = {(g , h) : U ∩ g · U ∩ gh · U 6= ∅}.

Let R ⊂ F (Σ) denote the subgroup generated by xgxhx(gh)−1 for
(g , h) ∈W . For X , U sufficiently nice,

Γ ' F (Σ)/R.



Group presentation from topology

How nice is nice?

1. Γ · U = X .

2. π0(X ) = 0. (X is connected.)

3. π1(X ) = 0. (X is simply-connected.)

4. π0(U) = 0. (U is connected.)



Example: F = Q(
√
−14)

Theorem
The following is a presentation of GL2(Z[

√
−14]):

GL2(OF ) = 〈g1, · · · , g8 : R1 = · · · = R22 = 1〉, where

R1 = g2
7 , R2 = g2

8 , R3 = g2
6 , R4 = g2

3 ,

R5 = g2
4 , R6 = g2

2 , R7 = g4
5 , R8 = (g2g−1

1 )2,

R9 = (g4g1)2, R10 = g−1
5 g−3

1 g−1
5 , R11 = (g7g−2

5 )2, R12 = (g8g−2
5 )2,

R13 = (g6g−2
5 )2, R14 = (g4g−2

5 )2, R15 = (g3g−2
5 )2, R16 = (g6g−1

1 g−1
5 )2,

R17 = (g3g−1
5 g3g1g2)2, R18 = (g3g7g1g8g−1

1 )2, R19 = g4g5g4g−1
1 g5g1,



Example: F = Q(
√
−14)

Theorem continued

R20 = g8g−1
5 g7g−1

5 g3g−1
1 g3g7g3g7g1g8g3g5g7g−1

5 ,

R21 = g1g5g7g−1
5 g3g−1

1 g3g7g1g−1
5 g7g−1

5 g3g−1
1 g3g7,

R22 = g6g5g7g−1
5 g3g−1

1 g3g7g1g6g−1
1 g7g3g1g3g5g7g5.

Corollary

GL2(Z[
√

14]) has no torsion-free quotients.
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Thank you.
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