Hyperbolic tessellations associated to Bianchi groups

Dan Yasaki

University of North Carolina Greensboro, Greensboro, NC 27412, USA

Overview

The space of positive definite n-ary Hermitian forms over a number field F forms an open cone in a real vector space. There is a natural decomposition of this cone into polyhedral cones corresponding to the facets of the Voronoï polyhedron.

We investigate this space in the case where n = 2 and F is an imaginary quadratic field, yielding tessellations of hyperbolic 3-space. As an application, we use the tessellation to get information about the arithmetic group $GL_2(\mathcal{O}_F)$.

Applications and related work

- 1. Group presentations
- 2. Group (co)-homology
- 3. Hecke operators acting on Bianchi modular forms.

Grunewald, Elstrodt, Mennicke, Mendoza, Schwermer, Vogtmann, Flöge, Cremona and students, Swan, Riley, Rahm-Fuchs, Sengün.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $n = 2, F = \mathbb{Q}$

Every binary quadratic form can be represented by a symmetric 2×2 real matrix. Let *C* be the 3-dimensional open cone of positive definite quadratic forms.

Figure: Cone of positive definite forms.

Voronoï polyhedron

The Voronoï polyhedron Π is the closed convex hull in \overline{C} of

$$\{vv^t : v \in \mathbb{Z}^2 \setminus 0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tessellation by ideal triangles

 $\boldsymbol{\Pi}$ is an infinite polyhedron whose faces are triangles.

Figure: Trace = 1 slice

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tessellation by ideal triangles

This tessellation descends to give tessellation of ${\mathfrak h}$ by ideal triangles.

Figure: Tessellation of \mathfrak{h} by ideal triangles.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Hermitian forms over F

n = 2, F = imaginary quadratic field

Let V be the 4 dimensional real vector space of Hermitian 2×2 matrices.

- 1. The positive definite Hermitian matrices forms an open cone $C \subset V$.
- 2. $\operatorname{GL}_2(\mathcal{O}_F)$ acts on C by

$$\gamma \cdot \mathbf{A} = \gamma \mathbf{A} \gamma^*.$$

Ideal hyperbolic polytopes

We can identify C/H with 3-dimensional hyperbolic space \mathbb{H}^3 . $\mathbb{H}^3 = \mathbb{C} \times \mathbb{R}_{>0}$ is the analogue of \mathfrak{h} , the complex upper half-plane.

The Voronoï polyhedron Π is the unbounded polyhedron gotten by taking the convex hull in \overline{C} of

$$\{vv^*: v \in \mathcal{O}_F^2 \setminus 0\}.$$

Ideal hyperbolic polytopes

Cusps

The points $vv^* \in \overline{C}$ correspond to ideal points (cusps), which are the points $F \cup \infty$. The facets of Π descend to a tessellation of \mathbb{H}^3 by ideal polytopes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hermitian forms over F

For $A \in C$, The minimum of A is

$$m(A) = \inf_{v \in \mathcal{O}_F^2 \setminus \{0\}} v^* A v.$$

A vector $v \in \mathcal{O}_F^2$ is minimal vector for A if $v^*Av = m(A)$. The set of minimal vectors for A is denoted M(A).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hermitian forms over F

For $A \in C$, The *minimum of A* is

$$m(A) = \inf_{v \in \mathcal{O}_F^2 \setminus \{0\}} v^* A v.$$

A vector $v \in \mathcal{O}_F^2$ is minimal vector for A if $v^*Av = m(A)$. The set of minimal vectors for A is denoted M(A).

A Hermitian form over F is *perfect* if it is uniquely determined by M(A) and m(A).

Let *I* be a facet of the Voronoï polyhedron with vertices V_I . There exists a unique perfect form ϕ_I with $m(\phi_I) = 1$ such that

$$\{vv^*: v \in M(\phi_I)\} = V_I.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is an algorithm to compute the $GL_2(\mathcal{O}_F)$ -conjugacy classes of perfect forms given the input of an initial perfect form.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is an algorithm to compute the $GL_2(\mathcal{O}_F)$ -conjugacy classes of perfect forms given the input of an initial perfect form.

We search for a perfect form by looking in the 1-parameter family of forms

$$\{\phi : m(\phi) = 1 \text{ and } \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2\} \subseteq M(\phi)\}.$$

There is an algorithm to compute the $GL_2(\mathcal{O}_F)$ -conjugacy classes of perfect forms given the input of an initial perfect form.

We search for a perfect form by looking in the 1-parameter family of forms

$$\{\phi : m(\phi) = 1 \text{ and } \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2\} \subseteq M(\phi)\}.$$

Once an initial form is found, the $GL_2(\mathcal{O}_F)$ -classes are found by "flipping across facets".

polytope	F-vector	picture
tetrahedron	[4, 6, 4]	
octahedron	[6, 12, 8]	
cuboctahedron	[12, 24, 14]	
triangular prism	[6, 9, 5]	
hexagonal cap	[9, 15, 8]	
square pyramid	[5, 8, 5]	
truncated tetrahedron	[12, 18, 8]	
triangular dipyramid	[5, 9, 6]	

Table: Combinatorial types of ideal polytopes that occur in this range.

Table: Voronoï ideal polytopes for class number 1.

h _F	d								
1	-1	0	1	0	0	0	0	0	0
1	-2	0	0	1	0	0	0	0	0
1	-3	1	0	0	0	0	0	0	0
1	-7	0	0	0	1	0	0	0	0
1	-11	0	0	0	0	0	0	1	0
1	-19	0	0	1	1	0	0	0	0
1	-43	0	0	0	2	1	0	1	0
1	-67	0	1	0	2	1	2	1	0
1	-163	11	0	1	8	2	3	0	0

-

Table: Voronoï ideal polytopes for class number 2.

h _F	d								
2	-5	0	0	0	2	0	0	0	0
2	-6	0	0	0	0	1	0	1	0
2	-10	0	1	0	1	0	2	0	0
2	-13	1	0	0	3	1	1	0	0
2	$^{-15}$	1	1	0	0	0	0	0	0
2	-22	5	0	1	4	0	2	0	0
2	-35	3	4	0	1	0	2	0	0
2	-37	10	0	0	8	1	8	0	0
2	-51	1	0	1	2	1	0	1	0

Table: Voronoï ideal polytopes for class number 2.

h _F	d								
2	-58	47	0	0	7	2	6	0	0
2	-91	5	1	0	5	0	3	0	0
2	-115	3	1	0	5	2	4	0	0
2	-123	1	1	1	6	3	3	1	0
2	-187	18	1	1	4	1	9	1	0
2	-235	13	1	0	12	4	11	0	0
2	-267	24	1	1	13	5	10	1	0
2	-403	66	1	0	16	2	20	0	2
2	-427	65	2	0	19	4	24	0	0

くしゃ (中)・(中)・(中)・(日)

Table: Voronoï ideal polytopes for class number 3.

h _F	d								
3	-23	0	1	0	1	0	1	0	0
3	-31	0	0	0	3	0	1	0	0
3	-59	0	1	1	3	0	2	0	0
3	-83	6	0	0	2	2	1	1	0

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Table: Voronoï ideal polytopes for class number 4.

h _F	d								
4	-14	5	0	0	3	0	1	0	0
4	-17	5	0	0	2	1	3	1	0
4	-21	8	2	0	2	1	4	0	0
4	-30	6	0	0	6	4	4	0	0
4	-33	9	0	1	8	1	6	1	0
4	-34	20	0	0	3	1	6	1	0
4	-39	1	0	0	3	1	1	0	0
4	-46	32	1	0	5	0	9	0	0

Table: Voronoï ideal polytopes for class number 4.

h _F	d								
4	-55	5	1	0	2	0	2	0	0
4	-57	33	1	0	10	3	14	2	0
4	-73	57	1	1	13	1	14	0	2
4	-78	69	1	0	11	4	18	0	0
4	-82	92	0	0	8	3	11	1	0
4	-85	56	0	0	17	0	28	0	0
4	-93	79	1	0	20	7	21	0	0
4	-97	95	0	1	19	3	19	0	0

Table: Voronoï ideal polytopes for class number 5 and 6.

h _F	d								
5	-47	5	0	0	1	1	2	0	0
5	-79	9	0	0	5	0	4	0	0
6	-26	18	1	0	2	1	4	0	0
6	-29	15	0	0	6	0	6	0	0
6	-38	33	1	0	2	1	6	1	0
6	-53	45	0	0	7	2	13	0	0
6	-61	41	1	0	11	1	16	0	0
6	-87	6	0	0	6	2	3	0	0

Table: Voronoï ideal polytopes for class number 7 and 8.

h _F	d								
7	-71	7	1	0	4	0	4	0	0
8	-41	31	0	1	9	0	8	0	0
8	-62	81	0	0	7	2	7	0	0
8	-65	69	2	0	9	0	19	0	0
8	-66	67	1	1	9	4	12	1	0
8	-69	51	2	0	15	2	21	0	0
8	-77	81	1	0	9	2	26	0	0
8	-94	125	1	0	10	2	17	0	0
8	-95	12	0	0	4	0	9	0	0

Table: Voronoï ideal polytopes for class number 10 and 12.

h _F	d								
10	-74	105	1	0	9	1	12	0	0
10	-86	130	0	0	9	1	18	1	0
12	-89	136	0	0	14	1	21	1	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Group presentation from topology

A general result of Macbeath and Weil gives the following.

Theorem

Suppose a space X is acted upon by a group of homeomorphisms Γ . Let $U \subset X$ be an open subset, and let $\Sigma \subset \Gamma$ denote the set

$$\Sigma = \{g \in \Gamma : g \cdot U \cap U \neq \emptyset\}.$$

Let $W \subset \Sigma \times \Sigma$ be the set

$$W = \{(g, h) : U \cap g \cdot U \cap gh \cdot U \neq \emptyset\}.$$

Let $R \subset F(\Sigma)$ denote the subgroup generated by $x_g x_h x_{(gh)^{-1}}$ for $(g, h) \in W$. For X, U sufficiently nice,

$$\Gamma \simeq F(\Sigma)/R.$$

Group presentation from topology

How nice is *nice*?

1. $\Gamma \cdot U = X$. 2. $\pi_0(X) = 0$. (X is connected.) 3. $\pi_1(X) = 0$. (X is simply-connected.) 4. $\pi_0(U) = 0$. (U is connected.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example: $F = \mathbb{Q}(\sqrt{-14})$

Theorem The following is a presentation of $GL_2(\mathbb{Z}[\sqrt{-14}])$:

 $\mathsf{GL}_2(\mathcal{O}_F) = \langle g_1, \cdots, g_8 : R_1 = \cdots = R_{22} = 1 \rangle$, where

$$\begin{array}{ll} R_1 = g_7^2, & R_2 = g_8^2, & R_3 = g_6^2, & R_4 = g_3^2, \\ R_5 = g_4^2, & R_6 = g_2^2, & R_7 = g_5^4, & R_8 = (g_2 g_1^{-1})^2, \\ R_9 = (g_4 g_1)^2, & R_{10} = g_5^{-1} g_1^{-3} g_5^{-1}, & R_{11} = (g_7 g_5^{-2})^2, & R_{12} = (g_8 g_5^{-2})^2, \\ R_{13} = (g_6 g_5^{-2})^2, & R_{14} = (g_4 g_5^{-2})^2, & R_{15} = (g_3 g_5^{-2})^2, & R_{16} = (g_6 g_1^{-1} g_5^{-1})^2, \end{array}$$

 $R_{17} = (g_3 g_5^{-1} g_3 g_1 g_2)^2, \quad R_{18} = (g_3 g_7 g_1 g_8 g_1^{-1})^2, \quad R_{19} = g_4 g_5 g_4 g_1^{-1} g_5 g_1,$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example: $F = \mathbb{Q}(\sqrt{-14})$

Theorem continued

$$\begin{split} R_{20} &= g_8 g_5^{-1} g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7 g_3 g_7 g_1 g_8 g_3 g_5 g_7 g_5^{-1}, \\ R_{21} &= g_1 g_5 g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7 g_1 g_5^{-1} g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7, \\ R_{22} &= g_6 g_5 g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7 g_1 g_6 g_1^{-1} g_7 g_3 g_1 g_3 g_5 g_7 g_5. \end{split}$$

Example: $F = \mathbb{Q}(\sqrt{-14})$

Theorem continued

$$\begin{split} R_{20} &= g_8 g_5^{-1} g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7 g_3 g_7 g_1 g_8 g_3 g_5 g_7 g_5^{-1}, \\ R_{21} &= g_1 g_5 g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7 g_1 g_5^{-1} g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7, \\ R_{22} &= g_6 g_5 g_7 g_5^{-1} g_3 g_1^{-1} g_3 g_7 g_1 g_6 g_1^{-1} g_7 g_3 g_1 g_3 g_5 g_7 g_5. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollary $GL_2(\mathbb{Z}[\sqrt{14}])$ has no torsion-free quotients.

Thank you.

<□ > < @ > < E > < E > E のQ @