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Overview

The space of positive definite n-ary Hermitian forms over a number
field F forms an open cone in a real vector space. There is a
natural decomposition of this cone into polyhedral cones
corresponding to the facets of the Voronoi polyhedron.

We investigate this space in the case where n =2 and F is an
imaginary quadratic field, yielding tessellations of hyperbolic
3-space. As an application, we use the tessellation to get
information about the arithmetic group GL2(OF).



Applications and related work

1. Group presentations
2. Group (co)-homology

3. Hecke operators acting on Bianchi modular forms.

Grunewald, Elstrodt, Mennicke, Mendoza, Schwermer, Vogtmann,
Floge, Cremona and students, Swan, Riley, Rahm-Fuchs, Sengiin.



Review of the rational case

n=2 F=Q

Every binary quadratic form can be represented by a symmetric
2 x 2 real matrix. Let C be the 3-dimensional open cone of
positive definite quadratic forms.

Figure: Cone of positive definite forms.



Review of the rational case

Voronoi polyhedron
The Voronoi polyhedron T is the closed convex hull in C of

{wt: vez?\o}



Review of the rational case

Tessellation by ideal triangles

[T is an infinite polyhedron whose faces are triangles.

Figure: Trace = 1 slice



Review of the rational case

Tessellation by ideal triangles

This tessellation descends to give tessellation of § by ideal
triangles.

Figure: Tessellation of b by ideal triangles.



Hermitian forms over F

n = 2, F = imaginary quadratic field
Let V be the 4 dimensional real vector space of Hermitian 2 x 2
matrices.

1. The positive definite Hermitian matrices forms an open cone
ccVv.

2. GL2(OF) acts on C by

v A=Ay



|deal hyperbolic polytopes

We can identify C/H with 3-dimensional hyperbolic space H?3.
H3 = C x Ry is the analogue of h, the complex upper half-plane.

The Voronoi polyhedron 1 is the unbounded polyhedron gotten by
taking the convex hull in C of

{w*: ve 02\ 0k



Ideal hyperbolic polytopes

Cusps

The points vw* € C correspond to ideal points (cusps), which are
the points F U oco. The facets of I descend to a tessellation of H3
by ideal polytopes.



Hermitian forms over F

For A€ C, The minimum of A is

m(A) = inf v"Av.
veo2\{0}

A vector v € O2 is minimal vector for A if v*Av = m(A). The set
of minimal vectors for A is denoted M(A).



Hermitian forms over F

For A€ C, The minimum of A is

m(A) = inf v"Av.
veo2\{0}

A vector v € O2 is minimal vector for A if v*Av = m(A). The set
of minimal vectors for A is denoted M(A).

A Hermitian form over F is perfect if it is uniquely determined by
M(A) and m(A).



Voronoi polyhedron

Let / be a facet of the Voronoi polyhedron with vertices V,. There
exists a unique perfect form ¢; with m(¢;) = 1 such that

{w* : ve Mg} =V,.



Voronoi polyhedron

There is an algorithm to compute the GLy(OF)-conjugacy classes
of perfect forms given the input of an initial perfect form.



Voronoi polyhedron

There is an algorithm to compute the GLy(OF)-conjugacy classes
of perfect forms given the input of an initial perfect form.

We search for a perfect form by looking in the 1-parameter family
of forms

{(;5 : m(¢) =1 and {el,ez,el + 62} - M(¢)}



Voronoi polyhedron

There is an algorithm to compute the GLy(OF)-conjugacy classes
of perfect forms given the input of an initial perfect form.

We search for a perfect form by looking in the 1-parameter family
of forms

{(b : m(¢) =1 and {el,ez,el + 62} - M(¢)}

Once an initial form is found, the GL2(OF)-classes are found by
“flipping across facets”.



|deal polytope data

Table: Combinatorial types of ideal polytopes that occur in this range.

polytope F-vector  picture
tetrahedron [4,6,4] A
octahedron [6,12,8] )
cuboctahedron [12,24,14] ()
triangular prism [6,9,5] ‘
hexagonal cap [9, 15, 8] °
square pyramid [5,8,5] 4
|
truncated tetrahedron  [12,18, 8] '
triangular dipyramid [5,9, 6] ‘




|deal polytope data

Table: Voronoi ideal polytopes for class number 1.
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|deal polytope data

Table: Voronoi ideal polytopes for class number 2.
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|deal polytope data

Table: Voronoi ideal polytopes for class number 2.

w o A OO O ae@
2 58 41 0 0 72 6 0
2 91 b 1 0 5 0 3 0
2 -115 3 1 0 5 2 4 0
2 —-123 1 1 1 6 3 3 1
2 -—18r 18 1 1 4 1 9 1
2 -23% 13 1 0 12 4 11 O
2 =267 24 1 1 13 5 10 1
2 403 o6 1 0 16 2 20 O
2 4271 65 2 0 19 4 24 0

ovoooocoocooco| @




|deal polytope data

Table: Voronoi ideal polytopes for class number 3.

w o« A9 OB 0 4 @

3 =23 0 1 0 1 0 1 0
3 =31 O 0 0 3 0 1 0
3 =59 0 1 1 3 0 2 0
3 —-83 6 0 0 2 2 1 1

cocooco| €




|deal polytope data

Table: Voronoi ideal polytopes for class number 4.

w « A9 OS 0 4 @4
4 14 5 0 0 3 0 1 0 0
4 17 5 0 0 2 1 3 1 0
4 21 8 2 0 2 1 4 0 0
4 30 6 0 0 6 4 4 0 0
4 33 9 0 1 8 1 6 1 0
4 34 20 0 0 3 1 6 1 0
4 -39 1 0 0 3 1 1 0 0
4 46 32 1 0 5 0 9 0 0




|deal polytope data

Table: Voronoi ideal polytopes for class number 4.

e d B O V0 404
4 55 5 1 0 2 0 2 0 0
4 -57 33 1 0 10 3 14 2 0
4 —73 57 1 1 13 1 14 0 2
4 —78 60 1 0 11 4 18 0 0
4 -8 92 0 0 8 3 11 1 0
4 -85 5 0 0 17 0 28 0 0
4 —93 79 1 0 20 7 21 0 0
4 —97 95 0 1 19 3 19 0 0




|deal polytope data

Table: Voronoi ideal polytopes for class number 5 and 6.

w « A9 O® 0 4 @4
5 47 5 0 0 1 1 2 0 o0
5 79 9 0 0 5 0 4 0 0
6 -2 18 1 0 2 1 4 0 o0
6 -20 15 0 0 6 0 6 0 0
6 -38 33 1 0 2 1 6 1 0
6 -53 45 0 0 7 2 13 0 0
6 —61 41 1 0 11 1 16 0 0
6 -87 6 0 0 6 2 3 0 0




|deal polytope data

Table: Voronoi ideal polytopes for class number 7 and 8.

e d B > O ‘ C « @4
7T 71 7 1 0 4 0 4 0 0
8 —41 31 0 1 9 0 8 0 0
8 —62 81 0 0 7 2 7 0 0
8 —65 69 2 0 9 0 19 0 0
8 —66 67 1 1 9 4 12 1 0
8 —69 b1 2 0 15 2 21 0 0
8 —77 81 1 0 9 2 26 0 0
8 —94 125 1 0 10 2 17 0 0
8 —-95 12 0 0 4 0 9 0 0




|deal polytope data

Table: Voronoi ideal polytopes for class number 10 and 12.

w o A 9 OB 0 404

10 —74 105 1 0 9 1 12 0

0
10 —-86 130 O 0 9 1 18 1 0
12 -89 136 O 0O 14 1 21 1 0




Group presentation from topology

A general result of Macbeath and Weil gives the following.

Theorem
Suppose a space X is acted upon by a group of homeomorphisms
. Let U C X be an open subset, and let > C I denote the set

Y={gel:g-UnU=#0D}.
Let W C ¥ x X be the set
W={(g,h): Ung-Ungh-U+#0}.

Let R C F(X) denote the subgroup generated by XgXhX(gh)-1 for
(g,h) € W. For X, U sufficiently nice,

[~ F(X)/R.



Group presentation from topology

How nice is nice?

1.T-U=X.

2. mp(X) = 0. (X is connected.)

3. m(X) =0. (X is simply-connected.)
4. mo(U) = 0. (U is connected.)



Example: F = Q(v/—14)

Theorem
The following is a presentation of GLy(Z[v/—14]):

GL2(Of) = (g1, ,88: Ri=---=Rn=1), where
R1:g72a R2:g82a R3:g62’ R4:g32’
R5 = gz%; Rﬁ = g227 R7 - gév RB = (gQg],_l)27
Ry = (g4g1)2, Rio = gsflgf3g§17 Ry, = (g7g;2)2, Ry, = (gsg;2)27
Ris = (g6gs %)% Ria = (gags 2)%, Ris = (2385 2)%  Ris = (2681 'g5 V)%,

Ri7 = (g385 'g38182)°, Ris = (387818381 '), Rio = gagsgagy ‘8581,



Example: F = Q(v/—14)

Theorem continued

Roo = gags 'g785 ‘8381 ' 83878387818583858785
Roi1 = 81858785 €381 83878185 €785 838, 8387,
Ro> = 86858785 8381 8387818681 &7838183858785-



Example: F = Q(v/—14)

Theorem continued

Roo = gags 'g785 ‘8381 ' 83878387818583858785
Roi1 = 81858785 €381 83878185 €785 838, 8387,
Ro> = 86858785 8381 8387818681 &7838183858785-

Corollary
GL2(Z[V/14]) has no torsion-free quotients.



Thank you.



	Introduction
	Hermitian forms over F
	Voronoï polyhedron
	Ideal polytope data
	Group presentation from topology
	Example

