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Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F , a

weight k ∈ (2Z>0)
[F :Q], and a nonzero ideal N ⊂ ZF , computes

the system of Hecke eigenvalues for the space Sk(N) of Hilbert

modular cusp forms of weight k and level N over F .

In other words, there exists an explicit finite procedure which takes
as input the field F , the ideal N ⊂ ZF , and the vector k encoded
in bits (in the usual way), and outputs:



Main algorithm

Our paper is concerned with the following theorem.
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Our paper is concerned with the following theorem.

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F , a

weight k ∈ (2Z>0)
[F :Q], and a nonzero ideal N ⊂ ZF , computes

the system of Hecke eigenvalues for the space Sk(N) of Hilbert

modular cusp forms of weight k and level N over F .

In other words, there exists an explicit finite procedure which takes
as input the field F , the ideal N ⊂ ZF , and the vector k encoded
in bits (in the usual way), and outputs: a finite set of sequences
(af (p))p encoding the Hecke eigenvalues for each constituent f in
Sk(N), where af (p) ∈ Ef ⊂ Q.
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Example 1: Hecke eigenvalues

Let F be the (totally real) cubic field with dF = 1101 = 3 · 367.
Then F = Q(w) with w3 − w2 − 9w + 12 = 0. The field F has
Galois group S3 and strict class number 1.

We find that the space S2(1) of Hilbert cusp forms of parallel
weight 2 (i.e. k = (2, 2, 2)) and level (1) has dimC S2(1) = 1.

Np π a(p) #J(Fp)

2 w − 2 0 3
3 w − 3 −3 7
3 w − 1 −1 5
4 w2 + w − 7 −3 8
19 w + 1 −6 26
23 w2 − 2w − 1 6 18

There exists a (modular!) elliptic curve J over F such that
#J(Fp) = Np + 1 − a(p)...
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Shimura curves

In analogy with the classical modular curves X0(N), there are
curves called Shimura curves whose cohomology contains the
Hecke module Sk(N), in accordance with the Langlands philosophy.

Suppose that n = [F : Q] is odd. Let B be the quaternion algebra
over F which is split at all finite places and ramified at all but one
real place, corresponding to ι∞ : B ↪→ M2(R).

For the moment, suppose that F has strict class number 1.
Further, assume B 6∼= M2(Q) for uniformity of presentation.



Shimura curves



Shimura curves

Shimura curves can be described by quotients of the upper
half-plane by (arithmetic) Fuchsian groups.



Shimura curves

Shimura curves can be described by quotients of the upper
half-plane by (arithmetic) Fuchsian groups.

Let O0(N) ⊂ B be an Eichler order of level N (“upper triangular
modulo N”),



Shimura curves

Shimura curves can be described by quotients of the upper
half-plane by (arithmetic) Fuchsian groups.

Let O0(N) ⊂ B be an Eichler order of level N (“upper triangular
modulo N”), let

O0(N)×1 = {γ ∈ O0(N) : nrd(γ) = 1},



Shimura curves

Shimura curves can be described by quotients of the upper
half-plane by (arithmetic) Fuchsian groups.

Let O0(N) ⊂ B be an Eichler order of level N (“upper triangular
modulo N”), let

O0(N)×1 = {γ ∈ O0(N) : nrd(γ) = 1},

and let
Γ0(N) = ι∞(O0(N)×1 )/{±1} ⊂ PSL2(R).



Shimura curves

Shimura curves can be described by quotients of the upper
half-plane by (arithmetic) Fuchsian groups.

Let O0(N) ⊂ B be an Eichler order of level N (“upper triangular
modulo N”), let

O0(N)×1 = {γ ∈ O0(N) : nrd(γ) = 1},

and let
Γ0(N) = ι∞(O0(N)×1 )/{±1} ⊂ PSL2(R).

Then Γ0(N) is a discrete and cocompact subgroup of PSL2(R);



Shimura curves

Shimura curves can be described by quotients of the upper
half-plane by (arithmetic) Fuchsian groups.

Let O0(N) ⊂ B be an Eichler order of level N (“upper triangular
modulo N”), let

O0(N)×1 = {γ ∈ O0(N) : nrd(γ) = 1},

and let
Γ0(N) = ι∞(O0(N)×1 )/{±1} ⊂ PSL2(R).

Then Γ0(N) is a discrete and cocompact subgroup of PSL2(R); so
XB

0 (N) = Γ0(N)\H is a compact Riemann surface, a Shimura

curve.
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Jacquet-Langlands correspondence

The Jacquet-Langlands correspondence yields an isomorphism of
Hecke modules

S2(N)
∼−→ SB

2 (N)

where SB
2 (N) denotes the space of quaternionic modular forms

over B of level N.

A quaternionic cusp form for B of parallel weight 2 and level N is
a holomorphic function f : H → C such that

f (γz) = (cz + d)2f (z) for all γ =

(

a b

c d

)

∈ Γ0(N).

(No cusps!)
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Example: Identifying the elliptic curve

We find our elliptic curve J with #J(Fp) = Np + 1 − a(p) as the
Jacobian of X (1).

Using a method of Cremona and Lingham, in fact we can find a
candidate elliptic curve A to represent the isogeny class of J:

A : y2 + w(w + 1)xy + (w + 1)y = x3 + w2x2 + a4x + a6

where a4 is equal to

−139671409350296864w
2
− 235681481839938468w + 623672370161912822

and a6 is equal to

110726054056401930182106463w
2 + 186839095087977344668356726w − 494423184252818697135532743.

Using the method of Faltings and Serre, we verify that J is indeed
isogeneous to A.
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Algorithmic methods

When n = [F : Q] is odd, the method used to compute these
Hecke eigenvalues can be viewed as a generalization of the method
of modular symbols: for the group Γ0(N) ⊂ PSL2(Z), one
computes with

S2(N) ∼= H1(X0(N), C; cusps)+

where the + indicates the +-space for complex conjugation.

When B 6∼= M2(Q) (no cusps), we can still identify

SB

2 (N) ∼= H1(X0(N), C)+ ∼= H1(Γ0(N), C)+ ∼= Hom(Γ0(N), C)+;

we compute this space as a Hecke module by working explicitly
with a presentation for the group Γ0(N), using an algorithm for
quaternionic ideal principalization for the Hecke operators.
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(See also work by Gunnells and Yasaki.)

So the case left is when n = [F : Q] is odd and F with (strict)
class number > 1; in this case, the natural object with an action of
Hecke operators is

X (C)



Extensions

If n = [F : Q] is even, a different method using the theory of
Brandt matrices is used; it was extended to totally real fields F of
arbitrary class number by Dembélé and Donnelly in ANTS VIII.
(See also work by Gunnells and Yasaki.)

So the case left is when n = [F : Q] is odd and F with (strict)
class number > 1; in this case, the natural object with an action of
Hecke operators is

X (C) =
⊔

[b]∈Cl+ ZF

Xb(1)(C),

a disjoint union of curves indexed by the strict class group of F .
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(

s 0
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)

,

(

0 1
−1 0
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where s =
√

w + 1 (taken with respect to the split real place). A
fundamental domain for Γ(1) is as follows.
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presentations. We have
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)+

and dimS2(1) = 1 + 1 = 2.
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A Hecke operator Tp can be understood via correspondences, a
double coset description, or as an “averaging operator”: it takes
the form

(f | Tp)(γ) =
∑

a∈P1(Fp)

f (δ′a)

for f ∈ Hom(Γ′, C) and γ ∈ Γ.

Consider the prime p3 = (w + 2)ZF of norm 3, which is nontrivial
in Cl+(ZF ).

The sum is over the left ideals of O of norm p3, which are in
bijection with P1(F3). For I[1:0] ⊂ O, we principalize

JbI[1:0] = O′((w + 1) + i + ij) = O′π′

[1:0].

For the generator α, we find π′

[1:0]α = δ′[1:0]π
′

[1:0] where

14δ′[1:0] = (7w2 − 98) + · · · + (−2w2 + 5w + 20)ij ∈ O′

We write δ′[1:0] as a word in the generators for Γ′, repeat, and sum.
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We obtain

Tp3 |H =
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.

In a similar way, we find that Tp5 is the identity matrix and that
complex conjugation acts by

W∞ |H =









1 1 0 0
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.

We conclude that Tp3 |H+ =

(

0 2
2 0

)

and Tp5 |H+ =

(

1 0
0 1

)

.

H+ breaks up, yielding two one-dimensional eigenforms f and g .
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The form g is visibly a quadratic twist of f .
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By work of Deligne, the curves X = X (1) and Xb are defined over
the strict class field F+ of F and that Gal(F+/F ) permutes them.
We compute that F+ = F (

√
−3w2 + 8w + 12). Therefore the

Jacobian Jf , corresponding to the cusp form f , is a modular elliptic
curve over F+ with everywhere good reduction, and the form g is
the twist of f by the character χ corresponding to the extension
F+/F .

However, the Jacobian of X = X (1) t Xb(1) is an abelian variety
of dimension 2 defined over F which is isogenous to a product
J × Jχ of an elliptic curve J over F with #J(Fp) = Np + 1− af (p)
and everywhere good reduction, and its quadratic twist Jχ by χ.

In fact, Watkins found that J is the base change to F of

121c : y2 + xy = x3 + x2 − 2x − 7

and in particular, J miraculously has an 11-isogeny.



Thanks!


