Computing automorphic forms on Shimura curves over fields with arbitrary class number

> John Voight University of Vermont

Ninth Algorithmic Number Theory Symposium (ANTS-IX) INRIA, Nancy, France 20 July 2010

```
Theorem (Dembélé-Donnelly, Greenberg-V)
```

```
Theorem (Dembélé-Donnelly, Greenberg-V)
```

There exists an algorithm which,

```
Theorem (Dembélé-Donnelly, Greenberg-V)
```

There exists an algorithm which, given a totally real field F,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F, the ideal $\mathfrak{N} \subset \mathbb{Z}_F$,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F, the ideal $\mathfrak{N} \subset \mathbb{Z}_F$, and the vector k encoded in bits (in the usual way),

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F, the ideal $\mathfrak{N} \subset \mathbb{Z}_F$, and the vector k encoded in bits (in the usual way), and outputs:

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F, the ideal $\mathfrak{N} \subset \mathbb{Z}_F$, and the vector k encoded in bits (in the usual way), and outputs: a finite set of sequences $(a_f(\mathfrak{p}))_{\mathfrak{p}}$

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F, the ideal $\mathfrak{N} \subset \mathbb{Z}_F$, and the vector k encoded in bits (in the usual way), and outputs: a finite set of sequences $(a_f(\mathfrak{p}))_{\mathfrak{p}}$ encoding the Hecke eigenvalues for each constituent f in $S_k(\mathfrak{N})$,

Theorem (Dembélé-Donnelly, Greenberg-V)

There exists an algorithm which, given a totally real field F, a weight $k \in (2\mathbb{Z}_{>0})^{[F:\mathbb{Q}]}$, and a nonzero ideal $\mathfrak{N} \subset \mathbb{Z}_F$, computes the system of Hecke eigenvalues for the space $S_k(\mathfrak{N})$ of Hilbert modular cusp forms of weight k and level \mathfrak{N} over F.

In other words, there exists an explicit finite procedure which takes as input the field F, the ideal $\mathfrak{N} \subset \mathbb{Z}_F$, and the vector k encoded in bits (in the usual way), and outputs: a finite set of sequences $(a_f(\mathfrak{p}))_{\mathfrak{p}}$ encoding the Hecke eigenvalues for each constituent f in $S_k(\mathfrak{N})$, where $a_f(\mathfrak{p}) \in E_f \subset \overline{\mathbb{Q}}$.

Let F be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$.

Let F be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$. Then $F = \mathbb{Q}(w)$ with $w^3 - w^2 - 9w + 12 = 0$.

Let *F* be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$. Then $F = \mathbb{Q}(w)$ with $w^3 - w^2 - 9w + 12 = 0$. The field *F* has Galois group S_3 and strict class number 1.

Let *F* be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$. Then $F = \mathbb{Q}(w)$ with $w^3 - w^2 - 9w + 12 = 0$. The field *F* has Galois group S_3 and strict class number 1.

We find that the space $S_2(1)$ of Hilbert cusp forms of parallel weight 2 (i.e. k = (2, 2, 2)) and level (1) has dim_C $S_2(1) = 1$.

Let *F* be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$. Then $F = \mathbb{Q}(w)$ with $w^3 - w^2 - 9w + 12 = 0$. The field *F* has Galois group S_3 and strict class number 1.

We find that the space $S_2(1)$ of Hilbert cusp forms of parallel weight 2 (i.e. k = (2, 2, 2)) and level (1) has dim_C $S_2(1) = 1$.

Np	π	$a(\mathfrak{p})$
2	<i>w</i> – 2	0
3	<i>w</i> – 3	-3
3	w-1	-1
4	$w^2 + w - 7$	-3
19	w+1	-6
23	$w^2 - 2w - 1$	6

Let *F* be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$. Then $F = \mathbb{Q}(w)$ with $w^3 - w^2 - 9w + 12 = 0$. The field *F* has Galois group S_3 and strict class number 1.

We find that the space $S_2(1)$ of Hilbert cusp forms of parallel weight 2 (i.e. k = (2, 2, 2)) and level (1) has dim_C $S_2(1) = 1$.

Np	π	$a(\mathfrak{p})$	$\#J(\mathbb{F}_{\mathfrak{p}})$
2	<i>w</i> – 2	0	3
3	<i>w</i> – 3	-3	7
3	w-1	$^{-1}$	5
4	$w^2 + w - 7$	-3	8
19	w+1	-6	26
23	$w^2 - 2w - 1$	6	18

Let *F* be the (totally real) cubic field with $d_F = 1101 = 3 \cdot 367$. Then $F = \mathbb{Q}(w)$ with $w^3 - w^2 - 9w + 12 = 0$. The field *F* has Galois group S_3 and strict class number 1.

We find that the space $S_2(1)$ of Hilbert cusp forms of parallel weight 2 (i.e. k = (2, 2, 2)) and level (1) has dim_C $S_2(1) = 1$.

Np	π	$a(\mathfrak{p})$	$\#J(\mathbb{F}_{\mathfrak{p}})$
2	<i>w</i> – 2	0	3
3	<i>w</i> – 3	-3	7
3	w-1	-1	5
4	$w^2 + w - 7$	-3	8
19	w+1	-6	26
23	$w^2 - 2w - 1$	6	18

There exists a (modular!) elliptic curve J over F such that $\#J(\mathbb{F}_{p}) = N\mathfrak{p} + 1 - a(\mathfrak{p})...$

In analogy with the classical modular curves $X_0(N)$, there are curves called *Shimura curves* whose cohomology contains the Hecke module $S_k(\mathfrak{N})$,

Suppose that $n = [F : \mathbb{Q}]$ is odd.

Suppose that $n = [F : \mathbb{Q}]$ is odd. Let *B* be the quaternion algebra over *F* which is split at all finite places

Suppose that $n = [F : \mathbb{Q}]$ is odd. Let *B* be the quaternion algebra over *F* which is split at all finite places and ramified at all but one real place,

Suppose that $n = [F : \mathbb{Q}]$ is odd. Let *B* be the quaternion algebra over *F* which is split at all finite places and ramified at all but one real place, corresponding to $\iota_{\infty} : B \hookrightarrow M_2(\mathbb{R})$.

Suppose that $n = [F : \mathbb{Q}]$ is odd. Let *B* be the quaternion algebra over *F* which is split at all finite places and ramified at all but one real place, corresponding to $\iota_{\infty} : B \hookrightarrow M_2(\mathbb{R})$.

For the moment, suppose that F has strict class number 1.

Suppose that $n = [F : \mathbb{Q}]$ is odd. Let *B* be the quaternion algebra over *F* which is split at all finite places and ramified at all but one real place, corresponding to $\iota_{\infty} : B \hookrightarrow M_2(\mathbb{R})$.

For the moment, suppose that F has strict class number 1. Further, assume $B \ncong M_2(\mathbb{Q})$ for uniformity of presentation.
Let $\mathcal{O}_0(\mathfrak{N}) \subset B$ be an Eichler order of level \mathfrak{N} ("upper triangular modulo \mathfrak{N} "),

Let $\mathcal{O}_0(\mathfrak{N}) \subset B$ be an Eichler order of level \mathfrak{N} ("upper triangular modulo \mathfrak{N} "), let

$$\mathcal{O}_0(\mathfrak{N})_1^{\times} = \{ \gamma \in \mathcal{O}_0(\mathfrak{N}) : \mathsf{nrd}(\gamma) = 1 \},\$$

Let $\mathcal{O}_0(\mathfrak{N}) \subset B$ be an Eichler order of level \mathfrak{N} ("upper triangular modulo \mathfrak{N} "), let

$$\mathcal{O}_0(\mathfrak{N})_1^{\times} = \{ \gamma \in \mathcal{O}_0(\mathfrak{N}) : \mathsf{nrd}(\gamma) = 1 \},\$$

and let

$${\sf F}_0(\mathfrak{N})=\iota_\infty(\mathcal{O}_0(\mathfrak{N})_1^{ imes})/\{\pm 1\}\subset {\sf PSL}_2(\mathbb{R}).$$

Let $\mathcal{O}_0(\mathfrak{N}) \subset B$ be an Eichler order of level \mathfrak{N} ("upper triangular modulo \mathfrak{N} "), let

$$\mathcal{O}_0(\mathfrak{N})_1^{\times} = \{ \gamma \in \mathcal{O}_0(\mathfrak{N}) : \mathsf{nrd}(\gamma) = 1 \},$$

and let

$${\sf F}_0({\mathfrak N})=\iota_\infty({\mathcal O}_0({\mathfrak N})_1^{ imes})/\{\pm 1\}\subset {\sf PSL}_2({\mathbb R}).$$

Then $\Gamma_0(\mathfrak{N})$ is a discrete and cocompact subgroup of $\mathsf{PSL}_2(\mathbb{R})$;

Let $\mathcal{O}_0(\mathfrak{N}) \subset B$ be an Eichler order of level \mathfrak{N} ("upper triangular modulo \mathfrak{N} "), let

$$\mathcal{O}_0(\mathfrak{N})_1^{\times} = \{ \gamma \in \mathcal{O}_0(\mathfrak{N}) : \mathsf{nrd}(\gamma) = 1 \},\$$

and let

$${\sf F}_0(\mathfrak{N})=\iota_\infty(\mathcal{O}_0(\mathfrak{N})_1^{ imes})/\{\pm 1\}\subset {\sf PSL}_2(\mathbb{R}).$$

Then $\Gamma_0(\mathfrak{N})$ is a discrete and cocompact subgroup of $\mathsf{PSL}_2(\mathbb{R})$; so $X_0^B(\mathfrak{N}) = \Gamma_0(\mathfrak{N}) \setminus \mathcal{H}$ is a compact Riemann surface, a *Shimura curve*.

Example: The Shimura curve

The Shimura curve $X(1) = X_0^B(1)$ associated to F has signature $(1; 2^2, 3^5)$.

Example: The Shimura curve

The Shimura curve $X(1) = X_0^B(1)$ associated to F has signature $(1; 2^2, 3^5)$.

Jacquet-Langlands correspondence

$$S_2(\mathfrak{N}) \xrightarrow{\sim} S_2^B(\mathfrak{N})$$

$$S_2(\mathfrak{N}) \xrightarrow{\sim} S_2^B(\mathfrak{N})$$

where $S_2^B(\mathfrak{N})$ denotes the space of quaternionic modular forms over *B* of level \mathfrak{N} .

$$S_2(\mathfrak{N}) \xrightarrow{\sim} S_2^B(\mathfrak{N})$$

where $S_2^B(\mathfrak{N})$ denotes the space of quaternionic modular forms over *B* of level \mathfrak{N} .

A quaternionic cusp form for B of parallel weight 2 and level $\mathfrak N$

$$S_2(\mathfrak{N}) \xrightarrow{\sim} S_2^B(\mathfrak{N})$$

where $S_2^B(\mathfrak{N})$ denotes the space of quaternionic modular forms over *B* of level \mathfrak{N} .

A quaternionic cusp form for B of parallel weight 2 and level \mathfrak{N} is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$

$$S_2(\mathfrak{N}) \xrightarrow{\sim} S_2^B(\mathfrak{N})$$

where $S_2^B(\mathfrak{N})$ denotes the space of quaternionic modular forms over *B* of level \mathfrak{N} .

A quaternionic cusp form for B of parallel weight 2 and level \mathfrak{N} is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

$$f(\gamma z) = (cz + d)^2 f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(\mathfrak{N}).$

$$S_2(\mathfrak{N}) \xrightarrow{\sim} S_2^B(\mathfrak{N})$$

where $S_2^B(\mathfrak{N})$ denotes the space of quaternionic modular forms over *B* of level \mathfrak{N} .

A quaternionic cusp form for B of parallel weight 2 and level \mathfrak{N} is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

$$f(\gamma z) = (cz + d)^2 f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(\mathfrak{N}).$

(No cusps!)

We find our elliptic curve J with $\#J(\mathbb{F}_p) = Np + 1 - a(p)$ as the Jacobian of X(1).

We find our elliptic curve J with $\#J(\mathbb{F}_p) = Np + 1 - a(p)$ as the Jacobian of X(1).

Using a method of Cremona and Lingham, in fact we can find a candidate elliptic curve A to represent the isogeny class of J:

We find our elliptic curve J with $\#J(\mathbb{F}_p) = Np + 1 - a(p)$ as the Jacobian of X(1).

Using a method of Cremona and Lingham, in fact we can find a candidate elliptic curve A to represent the isogeny class of J:

$$A: y^{2} + w(w+1)xy + (w+1)y = x^{3} + w^{2}x^{2} + a_{4}x + a_{6}$$

where a_4 is equal to

 $-139671409350296864w^2-235681481839938468w+623672370161912822$

and a_6 is equal to

 $110726054056401930182106463w^2 + 186839095087977344668356726w - 494423184252818697135532743.$

We find our elliptic curve J with $\#J(\mathbb{F}_p) = Np + 1 - a(p)$ as the Jacobian of X(1).

Using a method of Cremona and Lingham, in fact we can find a candidate elliptic curve A to represent the isogeny class of J:

$$A: y^{2} + w(w+1)xy + (w+1)y = x^{3} + w^{2}x^{2} + a_{4}x + a_{6}$$

where a_4 is equal to

 $-139671409350296864w^2-235681481839938468w+623672370161912822$

and a_6 is equal to

 $110726054056401930182106463w^2 + 186839095087977344668356726w - 494423184252818697135532743.$

Using the method of Faltings and Serre, we verify that J is indeed isogeneous to A.

Algorithmic methods

When $n = [F : \mathbb{Q}]$ is odd, the method used to compute these Hecke eigenvalues can be viewed as a generalization of the method of modular symbols:

 $S_2(N)$

 $S_2(N) \cong H_1(X_0(N), \mathbb{C}; \mathrm{cusps})^+$

$$\mathcal{S}_2({\sf N})\cong {\sf H}_1({\sf X}_0({\sf N}),\mathbb{C};{
m cusps})^+$$

where the + indicates the +-space for complex conjugation.

$$\mathcal{S}_2({\sf N})\cong {\sf H}_1({\sf X}_0({\sf N}),\mathbb{C};{
m cusps})^+$$

where the + indicates the +-space for complex conjugation. When $B \ncong M_2(\mathbb{Q})$ (no cusps),

$$\mathcal{S}_2({\sf N})\cong {\sf H}_1({\sf X}_0({\sf N}),\mathbb{C};{
m cusps})^+$$

where the + indicates the +-space for complex conjugation.

When $B \ncong M_2(\mathbb{Q})$ (no cusps), we can still identify

$$\mathcal{S}_2({\sf N})\cong {\sf H}_1({\sf X}_0({\sf N}),\mathbb{C};{
m cusps})^+$$

where the + indicates the $+\mbox{-space}$ for complex conjugation.

When $B \ncong M_2(\mathbb{Q})$ (no cusps), we can still identify

 $S^B_2(\mathfrak{N})$

$$\mathcal{S}_2({\sf N})\cong {\sf H}_1({\sf X}_0({\sf N}),\mathbb{C};{
m cusps})^+$$

where the + indicates the $+\mbox{-space}$ for complex conjugation.

When $B \ncong M_2(\mathbb{Q})$ (no cusps), we can still identify

 $S_2^B(\mathfrak{N})\cong H^1(X_0(\mathfrak{N}),\mathbb{C})^+$

$$\mathcal{S}_2({\sf N})\cong {\sf H}_1({\sf X}_0({\sf N}),\mathbb{C};{
m cusps})^+$$

where the + indicates the $+\mbox{-space}$ for complex conjugation.

When $B \ncong M_2(\mathbb{Q})$ (no cusps), we can still identify

 $S_2^B(\mathfrak{N}) \cong H^1(X_0(\mathfrak{N}), \mathbb{C})^+ \cong H^1(\Gamma_0(\mathfrak{N}), \mathbb{C})^+$

$$\mathcal{S}_2(\mathsf{N})\cong \mathit{H}_1(\mathit{X}_0(\mathsf{N}),\mathbb{C};\mathsf{cusps})^+$$

where the + indicates the +-space for complex conjugation.

When $B \ncong M_2(\mathbb{Q})$ (no cusps), we can still identify

 $S_2^B(\mathfrak{N}) \cong H^1(X_0(\mathfrak{N}), \mathbb{C})^+ \cong H^1(\Gamma_0(\mathfrak{N}), \mathbb{C})^+ \cong \operatorname{Hom}(\Gamma_0(\mathfrak{N}), \mathbb{C})^+;$

$$\mathcal{S}_2(\mathsf{N})\cong \mathit{H}_1(\mathit{X}_0(\mathsf{N}),\mathbb{C};\mathsf{cusps})^+$$

where the + indicates the +-space for complex conjugation.

When $B \not\cong M_2(\mathbb{Q})$ (no cusps), we can still identify

$$S_2^B(\mathfrak{N}) \cong H^1(X_0(\mathfrak{N}), \mathbb{C})^+ \cong H^1(\Gamma_0(\mathfrak{N}), \mathbb{C})^+ \cong \operatorname{Hom}(\Gamma_0(\mathfrak{N}), \mathbb{C})^+;$$

we compute this space as a Hecke module by working explicitly with a presentation for the group $\Gamma_0(\mathfrak{N})$, using an algorithm for quaternionic ideal principalization for the Hecke operators.
Extensions

If $n = [F : \mathbb{Q}]$ is even, a different method using the theory of Brandt matrices is used;

So the case left is when $n = [F : \mathbb{Q}]$ is odd and F with (strict) class number > 1;

So the case left is when $n = [F : \mathbb{Q}]$ is odd and F with (strict) class number > 1; in this case, the natural object with an action of Hecke operators is

$$X(\mathbb{C})$$

So the case left is when $n = [F : \mathbb{Q}]$ is odd and F with (strict) class number > 1; in this case, the natural object with an action of Hecke operators is

$$X(\mathbb{C}) = igsqcup_{[\mathfrak{b}]\in\mathsf{Cl}^+ \, \mathbb{Z}_F} X_\mathfrak{b}(1)(\mathbb{C}),$$

a disjoint union of curves indexed by the strict class group of F.

Example 2

Let F = Q(w) where $w^3 - 11w - 11 = 0$.

Let $F = \mathbb{Q}(w)$ where $w^3 - 11w - 11 = 0$. The discriminant of F is equal to $2057 = 11^217$ and $\mathbb{Z}_F = \mathbb{Z}[w]$.

Let $F = \mathbb{Q}(w)$ where $w^3 - 11w - 11 = 0$. The discriminant of F is equal to 2057 = 11²17 and $\mathbb{Z}_F = \mathbb{Z}[w]$. We have $Cl(\mathbb{Z}_F) = \{1\}$ and $Cl^+(\mathbb{Z}_F) \cong \mathbb{Z}/2\mathbb{Z}$

The quaternion algebra
$$B=\left(rac{w+1,-1}{{\cal F}}
ight)$$
 ,

The quaternion algebra
$$B = \left(rac{w+1,-1}{F}
ight)$$
, generated by i,j
subject to $i^2 = w+1$, $j^2 = -1$, and $ji = -ij$,

The quaternion algebra $B = \left(\frac{w+1, -1}{F}\right)$, generated by i, j subject to $i^2 = w + 1$, $j^2 = -1$, and ji = -ij, is ramified at only two of three real places of F.

The quaternion algebra $B = \left(\frac{w+1,-1}{F}\right)$, generated by i, jsubject to $i^2 = w+1$, $j^2 = -1$, and ji = -ij, is ramified at only two of three real places of F. A maximal order $\mathcal{O} = \mathcal{O}(1)$ is generated over \mathbb{Z}_F by i and the element $k = (1 + (w^2 + 1)i + ij)/2$.

The quaternion algebra $B = \left(\frac{w+1,-1}{F}\right)$, generated by i,jsubject to $i^2 = w+1$, $j^2 = -1$, and ji = -ij, is ramified at only two of three real places of F. A maximal order $\mathcal{O} = \mathcal{O}(1)$ is generated over \mathbb{Z}_F by i and the element $k = (1 + (w^2 + 1)i + ij)/2$.

The right \mathcal{O} -ideal $J_{\mathfrak{b}}$ generated by $w^2 - 2w - 6$ and the element 2 + 2i + k has $\operatorname{nrd}(J_{\mathfrak{b}}) = \mathfrak{b}$.

The quaternion algebra $B = \left(\frac{w+1,-1}{F}\right)$, generated by i,jsubject to $i^2 = w+1$, $j^2 = -1$, and ji = -ij, is ramified at only two of three real places of F. A maximal order $\mathcal{O} = \mathcal{O}(1)$ is generated over \mathbb{Z}_F by i and the element $k = (1 + (w^2 + 1)i + ij)/2$.

The right \mathcal{O} -ideal $J_{\mathfrak{b}}$ generated by $w^2 - 2w - 6$ and the element 2 + 2i + k has $\operatorname{nrd}(J_{\mathfrak{b}}) = \mathfrak{b}$. Let $\mathcal{O}_{\mathfrak{b}}$ be the left order of $J_{\mathfrak{b}}$.

Example 2: Shimura curve

Example 2: Shimura curve

We take the splitting $B \hookrightarrow M_2(\mathbb{R})$ by

$$i, j \mapsto \begin{pmatrix} s & 0 \\ 0 & -s \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

where $s = \sqrt{w+1}$ (taken with respect to the split real place).

Example 2: Shimura curve

We take the splitting $B \hookrightarrow M_2(\mathbb{R})$ by

$$i, j \mapsto \begin{pmatrix} s & 0 \\ 0 & -s \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

where $s = \sqrt{w+1}$ (taken with respect to the split real place). A fundamental domain for $\Gamma(1)$ is as follows.

 $\Gamma(1)$ is generated by $lpha, eta, \gamma_1, \ldots, \gamma_7$

 $\Gamma(1)$ is generated by $lpha, eta, \gamma_1, \ldots, \gamma_7$ subject to

$$\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$$

 $\Gamma(1)$ is generated by $\alpha, \beta, \gamma_1, \ldots, \gamma_7$ subject to

$$\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$$

Let $\Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}})/\{\pm 1\}$. Then

 $X(\mathbb{C}) = \Gamma(1) ackslash \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) ackslash \mathcal{H}$

 $\Gamma(1)$ is generated by $lpha, eta, \gamma_1, \dots, \gamma_7$ subject to

$$\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$$

Let $\Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}})/\{\pm 1\}$. Then

 $X(\mathbb{C}) = \Gamma(1) ackslash \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) ackslash \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}).$

$$\begin{split} &\Gamma(1) \text{ is generated by } \alpha, \beta, \gamma_1, \dots, \gamma_7 \text{ subject to} \\ &\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1. \\ &\text{Let } \Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{\pm 1\}. \text{ Then} \\ &X(\mathbb{C}) = \Gamma(1) \backslash \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \backslash \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}). \end{split}$$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations.

Γ(1) is generated by $\alpha, \beta, \gamma_1, \dots, \gamma_7$ subject to $\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$ Let $\Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}})/\{\pm 1\}$. Then $X(\mathbb{C}) = \Gamma(1) \setminus \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \setminus \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}).$ The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic

presentations. We have

 $H^1(\Gamma, \mathbb{C})$

$$\begin{split} &\Gamma(1) \text{ is generated by } \alpha, \beta, \gamma_1, \dots, \gamma_7 \text{ subject to} \\ &\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1. \\ &\text{Let } \Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{\pm 1\}. \text{ Then} \\ &X(\mathbb{C}) = \Gamma(1) \backslash \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \backslash \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}). \end{split}$$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations. We have

 $H^1(\Gamma,\mathbb{C})\cong \operatorname{Hom}(\Gamma,\mathbb{C})$

Γ(1) is generated by $\alpha, \beta, \gamma_1, \dots, \gamma_7$ subject to $\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$ Let $\Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{\pm 1\}$. Then $X(\mathbb{C}) = \Gamma(1) \setminus \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \setminus \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}).$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations. We have

$$H^1(\Gamma,\mathbb{C})\cong \mathsf{Hom}(\Gamma,\mathbb{C})\cong \mathbb{C}\mathit{f}_lpha\oplus\mathbb{C}\mathit{f}_eta$$

Γ(1) is generated by $\alpha, \beta, \gamma_1, \dots, \gamma_7$ subject to $\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$ Let $\Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{\pm 1\}$. Then $X(\mathbb{C}) = \Gamma(1) \setminus \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \setminus \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}).$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations. We have

$$H^1(\Gamma,\mathbb{C})\cong \operatorname{Hom}(\Gamma,\mathbb{C})\cong \mathbb{C}f_{lpha}\oplus \mathbb{C}f_{eta}$$

where f_{α}, f_{β} are the characteristic functions for α and β ,

Γ(1) is generated by $\alpha, \beta, \gamma_1, \dots, \gamma_7$ subject to $\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1.$ Let $\Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{\pm 1\}.$ Then $X(\mathbb{C}) = \Gamma(1) \setminus \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \setminus \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}).$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations. We have

$$H^1(\Gamma,\mathbb{C})\cong \operatorname{Hom}(\Gamma,\mathbb{C})\cong \mathbb{C}f_{\alpha}\oplus \mathbb{C}f_{\beta}$$

where f_{α}, f_{β} are the characteristic functions for α and β , and a similar description for $H^1(\Gamma_{\mathfrak{b}}, \mathbb{C})$.

$$\begin{split} &\Gamma(1) \text{ is generated by } \alpha, \beta, \gamma_1, \dots, \gamma_7 \text{ subject to} \\ &\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1. \\ &\text{Let } \Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{ \pm 1 \}. \text{ Then} \\ &X(\mathbb{C}) = \Gamma(1) \backslash \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \backslash \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}). \end{split}$$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations. We have

$$H^1(\Gamma,\mathbb{C})\cong \operatorname{Hom}(\Gamma,\mathbb{C})\cong \mathbb{C}f_{\alpha}\oplus \mathbb{C}f_{\beta}$$

where f_{α}, f_{β} are the characteristic functions for α and β , and a similar description for $H^1(\Gamma_{\mathfrak{b}}, \mathbb{C})$. Thus

$$\mathcal{S}_2(1)\cong ig(H^1(\Gamma,\mathbb{C})\oplus H^1(\Gamma_\mathfrak{b},\mathbb{C})ig)^+$$

$$\begin{split} &\Gamma(1) \text{ is generated by } \alpha, \beta, \gamma_1, \dots, \gamma_7 \text{ subject to} \\ &\gamma_1^2 = \gamma_2^2 = \gamma_3^3 = \gamma_4^2 = \gamma_5^3 = \gamma_6^2 = \gamma_7^2 = \alpha \beta \alpha^{-1} \beta^{-1} \gamma_1 \cdots \gamma_7 = 1. \\ &\text{Let } \Gamma_{\mathfrak{b}}(1) = \iota_{\infty}(\mathcal{O}_{\mathfrak{b}}) / \{ \pm 1 \}. \text{ Then} \\ &X(\mathbb{C}) = \Gamma(1) \backslash \mathcal{H} \sqcup \Gamma_{\mathfrak{b}}(1) \backslash \mathcal{H} = X(1)(\mathbb{C}) \sqcup X_{\mathfrak{b}}(1)(\mathbb{C}). \end{split}$$

The groups $\Gamma = \Gamma(1)$ and $\Gamma' = \Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{b}}(1)$ have isomorphic presentations. We have

$$H^1(\Gamma,\mathbb{C})\cong \operatorname{Hom}(\Gamma,\mathbb{C})\cong \mathbb{C}f_{\alpha}\oplus \mathbb{C}f_{\beta}$$

where f_{α}, f_{β} are the characteristic functions for α and β , and a similar description for $H^1(\Gamma_{\mathfrak{b}}, \mathbb{C})$. Thus

$$\mathcal{S}_2(1)\cong ig(H^1(\Gamma,\mathbb{C})\oplus H^1(\Gamma_\mathfrak{b},\mathbb{C})ig)^+$$

and dim $S_2(1) = 1 + 1 = 2$.

Example 2: Hecke operators

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator":
A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $Cl^+(\mathbb{Z}_F)$.

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $\mathrm{Cl}^+(\mathbb{Z}_F)$.

The sum is over the left ideals of \mathcal{O} of norm \mathfrak{p}_3 , which are in bijection with $\mathbb{P}^1(\mathbb{F}_3)$.

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $\mathrm{Cl}^+(\mathbb{Z}_F)$.

The sum is over the left ideals of \mathcal{O} of norm \mathfrak{p}_3 , which are in bijection with $\mathbb{P}^1(\mathbb{F}_3)$. For $I_{[1:0]} \subset \mathcal{O}$, we principalize

 $J_{\mathfrak{b}}I_{[1:0]}$

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $\mathrm{Cl}^+(\mathbb{Z}_F)$.

The sum is over the left ideals of \mathcal{O} of norm \mathfrak{p}_3 , which are in bijection with $\mathbb{P}^1(\mathbb{F}_3)$. For $I_{[1:0]} \subset \mathcal{O}$, we principalize

$$J_{\mathfrak{b}}I_{[1:0]} = \mathcal{O}'((w+1) + i + ij) = \mathcal{O}'\pi'_{[1:0]}.$$

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $\mathrm{Cl}^+(\mathbb{Z}_F)$.

The sum is over the left ideals of \mathcal{O} of norm \mathfrak{p}_3 , which are in bijection with $\mathbb{P}^1(\mathbb{F}_3)$. For $I_{[1:0]} \subset \mathcal{O}$, we principalize

$$J_{\mathfrak{b}}I_{[1:0]} = \mathcal{O}'((w+1) + i + ij) = \mathcal{O}'\pi'_{[1:0]}.$$

For the generator $\alpha,$ we find $\pi'_{[1:0]}\alpha=\delta'_{[1:0]}\pi'_{[1:0]}$

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $\mathrm{Cl}^+(\mathbb{Z}_F)$.

The sum is over the left ideals of \mathcal{O} of norm \mathfrak{p}_3 , which are in bijection with $\mathbb{P}^1(\mathbb{F}_3)$. For $I_{[1:0]} \subset \mathcal{O}$, we principalize

$$J_{\mathfrak{b}}I_{[1:0]} = \mathcal{O}'((w+1) + i + ij) = \mathcal{O}'\pi'_{[1:0]}.$$

For the generator $\alpha,$ we find $\pi'_{[1:0]}\alpha=\delta'_{[1:0]}\pi'_{[1:0]}$ where

$$14\delta'_{[1:0]} = (7w^2 - 98) + \dots + (-2w^2 + 5w + 20)ij \in \mathcal{O}'$$

A Hecke operator T_p can be understood via correspondences, a double coset description, or as an "averaging operator": it takes the form

$$(f \mid T_{\mathfrak{p}})(\gamma) = \sum_{a \in \mathbb{P}^1(\mathbb{F}_{\mathfrak{p}})} f(\delta'_a)$$

for $f \in \text{Hom}(\Gamma', \mathbb{C})$ and $\gamma \in \Gamma$.

Consider the prime $\mathfrak{p}_3 = (w+2)\mathbb{Z}_F$ of norm 3, which is nontrivial in $\mathrm{Cl}^+(\mathbb{Z}_F)$.

The sum is over the left ideals of \mathcal{O} of norm \mathfrak{p}_3 , which are in bijection with $\mathbb{P}^1(\mathbb{F}_3)$. For $I_{[1:0]} \subset \mathcal{O}$, we principalize

$$J_{\mathfrak{b}}I_{[1:0]} = \mathcal{O}'((w+1) + i + ij) = \mathcal{O}'\pi'_{[1:0]}.$$

For the generator $\alpha,$ we find $\pi'_{[1:0]}\alpha=\delta'_{[1:0]}\pi'_{[1:0]}$ where

$$14\delta'_{[1:0]}=(7w^2-98)+\dots+(-2w^2+5w+20)ij\in\mathcal{O}'$$

We write $\delta_{[1:0]}'$ as a word in the generators for $\Gamma',$ repeat, and sum.

We obtain

$$T_{\mathfrak{p}_3} \mid H = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}.$$

In a similar way, we find that T_{p_5} is the identity matrix

We obtain

$$T_{\mathfrak{p}_3} \mid H = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}.$$

In a similar way, we find that $\mathcal{T}_{\mathfrak{p}_5}$ is the identity matrix and that complex conjugation acts by

$$W_{\infty} \mid H = egin{pmatrix} 1 & 1 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & -1 \end{pmatrix}.$$

We obtain

$$T_{\mathfrak{p}_3} \mid H = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}.$$

In a similar way, we find that $\mathcal{T}_{\mathfrak{p}_5}$ is the identity matrix and that complex conjugation acts by

$$W_\infty \mid H = egin{pmatrix} 1 & 1 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & -1 \end{pmatrix}.$$

We conclude that $T_{\mathfrak{p}_3} \mid H^+ = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ and $T_{\mathfrak{p}_5} \mid H^+ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

We obtain

$$T_{\mathfrak{p}_3} \mid H = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}.$$

In a similar way, we find that $\mathcal{T}_{\mathfrak{p}_5}$ is the identity matrix and that complex conjugation acts by

$$W_{\infty} \mid H = egin{pmatrix} 1 & 1 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & -1 \end{pmatrix}.$$

We conclude that
$$T_{\mathfrak{p}_3} \mid H^+ = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$
 and $T_{\mathfrak{p}_5} \mid H^+ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

 H^+ breaks up, yielding two one-dimensional eigenforms f and g.

We have the following Hecke eigenvalues for the forms f and g.

We have the following Hecke eigenvalues for the forms f and g.

þ	Np	$a_{\mathfrak{p}}(f)$	$a_{\mathfrak{p}}(g)$
<i>w</i> + 2	3	2	-2
w + 3	5	1	1
2	8	-5	-5
2w + 7	9	-2	2
W	11	0	0
$w^2 - w - 8$	17	-5	5
<i>w</i> – 3	17	-5	-5
$2w^2 - 5w - 10$	23	2	-2
$w^2 - 3w - 2$	25	-9	_9

We have the following Hecke eigenvalues for the forms f and g.

þ	Np	$a_{\mathfrak{p}}(f)$	$a_{\mathfrak{p}}(g)$
w + 2	3	2	-2
w + 3	5	1	1
2	8	-5	-5
2w + 7	9	-2	2
W	11	0	0
$w^2 - w - 8$	17	-5	5
<i>w</i> – 3	17	-5	-5
$2w^2 - 5w - 10$	23	2	-2
$w^2 - 3w - 2$	25	-9	-9

The form g is visibly a quadratic twist of f.

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them.

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$.

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f,

By work of Deligne, the curves X = X(1) and X_{b} are defined over the strict class field F^{+} of F and that $Gal(F^{+}/F)$ permutes them. We compute that $F^{+} = F(\sqrt{-3w^{2} + 8w + 12})$. Therefore the Jacobian J_{f} , corresponding to the cusp form f, is a modular elliptic curve over F^{+} with everywhere good reduction,

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However,

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F which is isogenous to a product $J \times J_{\chi}$ of an elliptic curve J over F

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F which is isogenous to a product $J \times J_{\chi}$ of an elliptic curve J over F with $\#J(\mathbb{F}_{\mathfrak{p}}) = N\mathfrak{p} + 1 - a_f(\mathfrak{p})$

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F which is isogenous to a product $J \times J_{\chi}$ of an elliptic curve J over F with $\#J(\mathbb{F}_{\mathfrak{p}}) = N\mathfrak{p} + 1 - a_f(\mathfrak{p})$ and everywhere good reduction,

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F which is isogenous to a product $J \times J_{\chi}$ of an elliptic curve J over F with $\#J(\mathbb{F}_{\mathfrak{p}}) = N\mathfrak{p} + 1 - a_f(\mathfrak{p})$ and everywhere good reduction, and its quadratic twist J_{χ} by χ .

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F which is isogenous to a product $J \times J_{\chi}$ of an elliptic curve J over F with $\#J(\mathbb{F}_{\mathfrak{p}}) = N\mathfrak{p} + 1 - a_f(\mathfrak{p})$ and everywhere good reduction, and its quadratic twist J_{χ} by χ .

In fact, Watkins found that J is the base change to F of

$$121c: y^2 + xy = x^3 + x^2 - 2x - 7$$

By work of Deligne, the curves X = X(1) and X_b are defined over the strict class field F^+ of F and that $Gal(F^+/F)$ permutes them. We compute that $F^+ = F(\sqrt{-3w^2 + 8w + 12})$. Therefore the Jacobian J_f , corresponding to the cusp form f, is a modular elliptic curve over F^+ with everywhere good reduction, and the form g is the twist of f by the character χ corresponding to the extension F^+/F .

However, the Jacobian of $X = X(1) \sqcup X_{\mathfrak{b}}(1)$ is an abelian variety of dimension 2 defined over F which is isogenous to a product $J \times J_{\chi}$ of an elliptic curve J over F with $\#J(\mathbb{F}_{\mathfrak{p}}) = N\mathfrak{p} + 1 - a_f(\mathfrak{p})$ and everywhere good reduction, and its quadratic twist J_{χ} by χ .

In fact, Watkins found that J is the base change to F of

$$121c: y^2 + xy = x^3 + x^2 - 2x - 7$$

and in particular, J miraculously has an 11-isogeny.

Thanks!

