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The result

THEOREM

One of the even unimodular lattices associated to the length 80
extended (binary) quadratic residue code is extremal:
the minimal non-zero norm is 8. We have SL2(F79) ⊆ Aut(L).
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The result

THEOREM

One of the even unimodular lattices associated to the length 80
extended (binary) quadratic residue code is extremal:
the minimal non-zero norm is 8. We have SL2(F79) ⊆ Aut(L).

L and its link to coding theory (via cyclotomy) was codified by
Schulze-Pillot, who could not find any norm 6 vector.

If n > 80, a lattice related to QR codes cannot be extremal.
(sqrt bound on minimum versus linear growth requirement).

No extremal lattice known for n = 72 (or n > 80).

Bachoc and Nebe previously found two other extremal lattices
with n = 80, via quaternionic coding theory.

The known part of our Aut(L) is smaller: 8.3 · 106 > 4.9 · 105.
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One of the even unimodular lattices associated to the length 80
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the minimal non-zero norm is 8. We have SL2(F79) ⊆ Aut(L).
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The techniques

THEOREM

One of the even unimodular lattices associated to the length 80
extended (binary) quadratic residue code is extremal:
the minimal non-zero norm is 8. We have SL2(F79) ⊆ Aut(L).

We show no norm 6 by finding all norm 10 vectors (!).

This is valid, using the Θ-series positivity.

In the short lattice vector enumeration, we use tree pruning.

We also use nice Aut action (as doubly transitive signed
permutations), derived in part by Abel, Elkies and Kominers.
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THEOREM

One of the even unimodular lattices associated to the length 80
extended (binary) quadratic residue code is extremal:
the minimal non-zero norm is 8. We have SL2(F79) ⊆ Aut(L).

We show no norm 6 by finding all norm 10 vectors (!).

This is valid, using the Θ-series positivity.

In the short lattice vector enumeration, we use tree pruning.

We also use nice Aut action (as doubly transitive signed
permutations), derived in part by Abel, Elkies and Kominers.

The enumeration part is heuristic, but we still get a proved result.
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Plan

1- Reminders.

2- Overview of the strategy.

3- Lattice enumeration.

D. Stehlé & M. Watkins On the extremality of an 80-dimensional lattice ANTS-IX 4/17



Introduction Reminders General strategy Lattice enumeration Conclusion

Lattices

Lattice ≡ additive subgroup of Z
n

≡ {
∑

i≤n xibi : xi ∈ Z}

First minimum:
λ = min(‖b‖2 : b ∈ L \ 0).

Lattice volume:
det L = | det(bi )i |, for any basis.

Unimodular lattice: | det L| = 1.
Even lattice: ‖b‖2 even for all b ∈ L.

Famous even unimod. lattices: E8, L24.
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Theta series

Theta-series: Θ(L) =
∑

b∈L q‖b‖2/2 (non-negative coeffs).

If L is an even unimodular lattice L of dimension 8ℓ,
then Θ(L) is a modular form of weight 4ℓ.

The set of modular forms of weight 4ℓ is a vector space of
dimension d = 1 + ⌊8ℓ/24⌋.
A triangular basis for this vector space looks like

f0 = 1+ cd ,0 qd + . . .
f1 = q+ cd ,1 qd + . . .

. . .
fd−1 = qd−1+ cd ,d−1 qd + . . .

An even unimodular L is said extremal if Θ(L) = f0.
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General comments about extremality

For large enough n, f0 has negative coeffs.
⇒ The total number of extremal lattices is bounded:

n ≤ 163 264 & genus theory in fixed n.

If n not a multiple of 8, minus signs abound, so no extremality
is possible (for our definition).

Number of known extremal lattices:

8 16 24 32 40 48 56 64 72 80

1 2 1 ≥ 107 ≥ 1051 3 3 1 0 2(+1)

E8 E8 ⊕ E8, D
+
16 L24 mass formula
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Plan

1- Reminders.

2- Overview of the strategy.

3- Lattice enumeration.
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Plan to show extremality

Case of 80-dimensional lattices (weight 40 modular forms):

f0 = 1 +1250172000 q4+7541401190400 q5+O(q6)
f1 = q + 19291168 q4 + 37956369150 q5 +O(q6)
f2 =q2+ 156024 q4 + 57085952 q5 +O(q6)
f3 =q3+ 168 q4 − 12636 q5 +O(q6)

We have Θ(L) = f0 + a1f1 + a2f2 + a3f3 for integers ai ≥ 0.

L has no vector of norm ≤ 4 (via a coding theory analogy):

⇒ a1 = a2 = 0.

Find ≈ 7.5 · 1012 vectors of norm 10.
Positivity gives a3 = 0, due to the minus sign on “12636 q5”.

We use heuristics & automorphisms to get norm 10 vectors.
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Searching vectors of norm 10 rather than norm 6???

We would need to provably exhaust all norm 6 vectors.

We heuristically find a tiny subset of the norm 10 vectors.

We estimate the speed-up to be around 1000.

Principle: Apply Aut(L) to reduce search space.

Remark: This strategy could be used for n = 72 (with 10 → 8) and
for n = 88 (with 10 → 12).
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Construction of our lattice L

The construction of L and the methods used to accelerate the
finding of short vectors are independent.

But finding a canonical representative of the orbit class of a
vector (under Aut) requires some knowledge of the group
action on L.

Elkies modified a construction of Gross to get five 80-dim
lattices, in correspondence with the class group of Q(

√
−79).

Each can be given in a basis s.t.

All coords have the same parity,
The square-sum of the coords is 16x the vector norm.

This yields the same lattices as Schulze-Pillot’s, only one of
which is a candidate for extremality: L.
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Apply Aut(L) to reduce search space

The (known) automorphisms have a ’nice’ action on Elkies’
basis: doubly transitive signed permutations on coords.
⇒ Finding canonical representatives of orbit classes is easy.

Finding ≈ 7.5 · 1012 vectors of norm 10 is reduced by a factor

∼ #SL2(F79) ≈ 4.9 · 105.

We first eliminate vectors with non-trivial stabilisers:

Take g ∈ Aut(L) of nontrivial conjugacy class, and find
all short vectors in lattices Ker(g − I ) (dim≤ 28).

We are left to find N ≈ 1.5 · 107 norm 10 orbits.

Via coupon-collecting analysis, we expect to need∑
k≤N

N
k
≈ 2.5 · 108 “random” norm 10 vectors.
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Plan

1- Reminders.

2- Overview of the strategy.

3- Lattice enumeration.
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The Kannan-Fincke-Pohst algorithm

Let (bi ) be a basis of L. Goal: ‖∑i xibi‖2 ≤ 10 with xi ∈ Z.

Gram-Schmidt orthogonalisation: b⋆
i = bi −

∑
j<i µi ,jb

⋆
j .

Shifts: yi := xi +
∑

j>i µj ,ixj .

⇒ New goal:
∑

i y2
i ‖b⋆

i ‖2 ≤ 10.

KFP algorithm:

Try all yd s.t. y2
d‖b⋆

d‖2 ≤ 10.

Try all (yd−1, yd) s.t.
∑

i≥d−1 y2
i ‖b⋆

i ‖2 ≤ 10.

...

Try all (y2, . . . , yd) s.t.
∑

i≥2 y2
i ‖b⋆

i ‖2 ≤ 10.

Try all (y1, . . . , yd) s.t.
∑

i≥1 y2
i ‖b⋆

i ‖2 ≤ 10.
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Pruning the KFP tree

Principle: Don’t waste all the norm on large i !

KFP algorithm:

Try all yd s.t. y2
d‖b⋆

d‖2 ≤ 10.

Try all (yd−1, yd) s.t.
∑

i≥d−1 y2
i ‖b⋆

i ‖2 ≤ 10.

...

Try all (y2, . . . , yd) s.t.
∑

i≥2 y2
i ‖b⋆

i ‖2 ≤ 10.

Try all (y1, . . . , yd) s.t.
∑

i≥1 y2
i ‖b⋆

i ‖2 ≤ 10.

Used Pj = 1 − j−1
100 , which seemed good in practice.

MAGMA traverses this KFP tree at ≈ 7.5 million nodes/second.

D. Stehlé & M. Watkins On the extremality of an 80-dimensional lattice ANTS-IX 15/17



Introduction Reminders General strategy Lattice enumeration Conclusion

Pruning the KFP tree

Principle: Don’t waste all the norm on large i !

KFP algorithm:

Try all yd s.t. y2
d‖b⋆

d‖2 ≤ 10.

Try all (yd−1, yd) s.t.
∑

i≥d−1 y2
i ‖b⋆

i ‖2 ≤ 10.

...

Try all (y2, . . . , yd) s.t.
∑

i≥2 y2
i ‖b⋆

i ‖2 ≤ 10.

Try all (y1, . . . , yd) s.t.
∑

i≥1 y2
i ‖b⋆

i ‖2 ≤ 10.

Used Pj = 1 − j−1
100 , which seemed good in practice.

MAGMA traverses this KFP tree at ≈ 7.5 million nodes/second.
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Pruning the KFP tree

Principle: Don’t waste all the norm on large i !

Pruned KFP algorithm:

Try all yd s.t. y2
d‖b⋆

d‖2 ≤ Pd · 10.

Try all (yd−1, yd) s.t.
∑

i≥d−1 y2
i ‖b⋆

i ‖2 ≤ Pd−1 · 10.

...

Try all (y2, . . . , yd) s.t.
∑

i≥2 y2
i ‖b⋆

i ‖2 ≤ P2 · 10.

Try all (y1, . . . , yd) s.t.
∑

i≥1 y2
i ‖b⋆

i ‖2 ≤ P1 · 10.

Used Pj = 1 − j−1
100 , which seemed good in practice.

MAGMA traverses this KFP tree at ≈ 7.5 million nodes/second.
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Refreshing the basis

Schnorr-Euchner tree traversal.

Random basis change every 105 vecs
(30 mins) ⇒ trivial parallelisation.

∼300,000 nodes per vector found.

Can heuristically analyze the miss
rate and subtrees sizes via volumes
of truncated hyperspheres.

Resembles the “extreme pruning”
from [Gama et al, Eurocrypt’10].
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Concluding remarks

Our code (in Magma/C) ran in 4 days using 14 CPUs.

The data can be checked in about 10 hours on 1 CPU.

≈90% time in finding vectors, 5% canonical orbit reps.

There are at least 3 other “candidates” for n = 80,
though the Aut groups are not as nice.

No extremal candidate is known (to us) for n = 72.

We can prove that L is not isometric to the Bachoc-Nebe
lattices, using the Classification of Finite Simple Groups.

For more details, read the paper. ©

D. Stehlé & M. Watkins On the extremality of an 80-dimensional lattice ANTS-IX 17/17


	Introduction
	Reminders
	General strategy
	Lattice enumeration
	Conclusion

