Evaluating large degree isogenies in subexponential time

David Jao and Vladimir Soukharev

University of Waterloo

July 19, 2010

D. Jao and V. Soukharev (U. of Waterloo) Evaluating isogenies in subexponential time

July 19, 2010 1 / 27

Outline

Preliminaries

- Isogenies
- Examples of isogenies
- Previous algorithms

Our algorithm

- Background: Bröker-Charles-Lauter algorithm
- Generalizing BCL to arbitrary curves

3 Example

- Let E and E' be elliptic curves over F.
- An isogeny $\phi \colon E \to E'$ is an algebraic morphism

$$\phi(x,y) = \left(\frac{f_1(x,y)}{g_1(x,y)}, \frac{f_2(x,y)}{g_2(x,y)}\right)$$

satisfying $\phi(\infty) = \infty$.

- Equivalently, an isogeny is an algebraic morphism which is a group homomorphism.
- The *degree* of an isogeny is its degree as an algebraic map.
- The *endomorphism ring* End(*E*) is the set of isogenies from *E*(*F*) to itself. This set forms a ring under composition.

Example (Scalar multiplication)

• Let
$$E: y^2 = x^3 + ax + b$$
.

• For $n \in \mathbb{Z}$, define $[n]: E \to E$ by [n](P) = nP. Then [n] is an isogeny.

• When *n* = 2,

$$[2](x,y) = \left(\frac{x^4 - 2ax^2 - 8bx + a^2}{4(x^3 + ax + b)}, \frac{(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b - a)y}{8(x^3 + ax + b)^2}\right)$$

• The degree of [n] is n^2 .

• The cardinality of ker([n]) is also n^2 .

Example (Frobenius map)

- Let $F = \mathbb{F}_q$ be a finite field.
- Define $\pi \colon E \to E$ by

$$\pi(x,y)=(x^q,y^q).$$

• π is an algebraic map and a group homomorphism, hence an isogeny.

•
$$\mathsf{deg}(\pi) = q$$
, but $\# \mathsf{ker}(\pi) = 1$.

The reason for this strange behavior is because π is *inseparable*.

Examples

Example (Dual isogenies)

- Let $F = \mathbb{F}_{109}$.
- Let $E_1: y^2 = x^3 + 2x + 2$ and $E_2: y^2 = x^3 + 34x + 45$. An isogeny $\phi: E_1 \rightarrow E_2$ (of degree 3) is given by

$$\phi(x,y) = \left(\frac{x^3 + 20x^2 + 50x + 6}{x^2 + 20x + 100}, \frac{(x^3 + 30x^2 + 23x + 52)y}{x^3 + 30x^2 + 82x + 19}\right)$$

• There exists an isogeny $\hat{\phi} \colon E_2 o E_1$, given by

$$\hat{\phi}(x,y) = \left(\frac{x^3 + 49x^2 + 46x + 104}{9x^2 + 5x + 34}, \frac{(x^3 + 19x^2 + 66x + 47)y}{27x^3 + 77x^2 + 88x + 101}\right),$$

satisfying
$$\phi\circ\hat{\phi}=$$
 [3] and $\hat{\phi}\circ\phi=$ [3].

• $\hat{\phi}$ is the *dual isogeny* of ϕ and vice-versa.

Example (Complex multiplication)

• Let $E: y^2 = x^3 - x$ be defined over F.

• Let
$$i \in F$$
 be a square root of -1 .

Define

$$\phi(\mathbf{x},\mathbf{y})=(-\mathbf{x},i\mathbf{y}).$$

• Then $\phi \circ \phi = [-1]$, and we have an inclusion $\mathbb{Z}[i] \hookrightarrow \text{End}(E)$.

- Isogenies between elliptic curves over finite fields have many applications in cryptography and number theory.
- For many of these applications, it is necessary to evaluate large degree isogenies explicitly. Large means $\ell\gtrsim 2^{100}$.
- $[n]: E \to E$ is easy to evaluate using double-and-add.
- Inseparable isogenies (i.e., Frobenius maps) are easy to evaluate: compute x^q using square-and-multiply.
- Linear combinations and compositions of easy to evaluate isogenies (scalar multiplication, frobenius map, complex multiplication by a small discriminant, small degree isogenies) are easy to evaluate.
- All other large degree isogenies are infeasible to evaluate via any obvious algorithms.

Theorem

Let E be an elliptic curve defined over a finite field. As a \mathbb{Z} -module, $\dim_{\mathbb{Z}} \operatorname{End}(E)$ is equal to either 2 or 4.

Definition

An elliptic curve *E* over a finite field is *supersingular* if dim_{\mathbb{Z}} End(*E*) = 4, and *ordinary* otherwise.

- Ordinary curves are more secure for cryptography.
- Isogenous curves are always either both ordinary, or both supersingular.
- For the rest of this talk, we assume all curves are ordinary.

Theorem (Tate)

For any two curves E_1 and E_2 defined over \mathbb{F}_q , there exists an isogeny from E_1 to E_2 over \mathbb{F}_q if and only if $t(E_1) = t(E_2)$ (equivalently, if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$).

Remark: The trace of E can be computed in polynomial time (Schoof).

Let $\phi \colon E \to E'$ be a separable isogeny.

- $E' \cong E/\ker \phi$.
- ker ϕ is an ideal of End(E).
- $\bullet~{\rm Up}$ to isomorphism, the ideal $\ker\phi$ uniquely determines $\phi.$

July 19, 2010

11 / 27

Definition

• An isogeny which maps between E and E', such that End(E) = End(E') is called a horizontal isogeny.

Theorem

- There is a 1-1 correspondence between horizontal isogenies
 φ: E → E' and proper ideals ℑ_φ ⊂ End(E).
- $\mathfrak{I}_{\phi\circ\psi} = \mathfrak{I}_{\phi}\mathfrak{I}_{\psi}.$
- deg ϕ equals the norm of \Im_{ϕ} .

The old, slow way

Let $E: y^2 = x^3 + ax + b$, and let $\mathfrak{I}_{\phi} = \mathfrak{L} \subset \text{End}(E)$ be a non-inert prime ideal of norm ℓ . (Note: ℓ is prime.)

- Denote by $\Phi_{\ell}(X, Y)$ the classical modular polynomial of level ℓ .
- Solve $\Phi_{\ell}(j(E), Y) = 0$ for Y. Let h be a solution.

Set

$$s = -\frac{18b}{\ell a} \frac{\frac{\partial \Phi}{\partial X}(j(E), h)}{\frac{\partial \Phi}{\partial Y}(j(E), h)} j(E) \in \mathbb{F}_q$$
$$a' = -\frac{1}{48} \frac{s^2}{h(h - 1728)} \in \mathbb{F}_q$$
$$b' = -\frac{1}{864} \frac{s^3}{h^2(h - 1728)} \in \mathbb{F}_q$$

• Then the equation for E' is $y^2 = x^3 + a'x + b'$.

• The equation for ϕ is also known (and is even more complicated).

Classical modular polynomials

 $\Phi_2(X, Y) = X^3 - X^2 Y^2 + 1488 X^2 Y - 162000 X^2 + 1488 X Y^2 + 40773375 X Y + 8748000000 X + Y^3 - 162000 Y^2 + 8748000000 Y - 157464000000000$

$$\begin{split} & \Phi_3(X,Y) = X^4 - X^3Y^3 + 2232X^3Y^2 - 1069956X^3Y + 36864000X^3 + 2232X^2Y^3 + 2587918086X^2Y^2 \\ & + 8900222976000X^2Y + 45298483200000X^2 - 1069956XY^3 + 8900222976000XY^2 - 770845966336000000XY \\ & + 1855425871872000000000X + Y^4 + 36864000Y^3 + 45298483200000Y^2 + 185542587187200000000Y \\ & \Phi_5(X,Y) = X^6 - X^5Y^5 + 3720X^5Y^4 - 4550940X^5Y^3 + 2028551200X^5Y^2 - 246683410950X^5Y + 1963211489280X^5 \\ & + 3720X^4Y^5 + 1665999364600X^4Y^4 + 107878928185336800X^4Y^3 + 383083609779811215375X^4Y^2 \\ & + 128541798906828816384000X^4Y + 1284733132841424456253440X^4 - 4550940X^3Y^5 \\ & + 107878928185336800X^3Y^4 - 441206965512914835246100X^3Y^3 + 26898488858380731577417728000X^3Y^2 \\ & - 192457934618928299655108231168000X^3Y + 280244777828439527804321565297868800X^3 + 2028551200X^2Y^5 \\ & + 383083609779811215375X^2Y^4 + 2689848858380731577417728000X^2Y^3 \\ & + 5110941777552418083110765199360000X^2Y^2 + 36554736583949629295706472332656640000X^2Y \\ & + 6692500042627997708487149415015068467200X^2 - 246683410950XY^5 + 128541798906828816384000XY^4 \\ & - 192457934618928299655108231168000XY^3 + 36554736583949629295706472332656640000XY^2 \\ & - 264073457076620596259715790247978782949376XY + 53274330803424425450420160273356509151232000X \\ & Y^6 + 1963211489280Y^5 + 1284733132841424456253440Y^4 + 28024477782843952780432156529786880Y^3 \\ & + 6692500042627997708487149415015068467200Y^2 + 53274330803424425450420160273356509151232000X \\ & Y^6 + 1963211489280Y^5 + 1284733132841424456253440Y^4 + 280244777828439527804321565297868800Y^3 \\ & + 6692500042627997708487149415015068467200Y^2 + 53274330803424425450420160273356509151232000Y \\ \end{aligned} + Y^6 + 1963211489280Y^5 + 1284733132841424456253440Y^4 + 280244777828439527804321565297868800Y^3 \\ & + 6692500042627997708487149415015068467200Y^2 + 53274330803424425450420160273356509151232000Y \\ \end{aligned}$$

 $+\ 141359947154721358697753474691071362751004672000$

→ Ξ →

- Clearly, computing $\Phi_{\ell}(X, Y)$ is infeasible for large ℓ .
- Theoretical complexity: $O(\ell^{3+\varepsilon})$
- World record over \mathbb{Z} : $\ell \approx 10000$ (Enge, 2007)
- World record over \mathbb{Z}_p : $\ell \approx 20000$ (Bröker, Lauter, Sutherland, 2010)
- Our goal: $\ell \gtrsim 2^{100}$

1 Preliminaries

Isogenies

- Examples of isogenies
- Previous algorithms

Our algorithm

- Background: Bröker-Charles-Lauter algorithm
- Generalizing BCL to arbitrary curves

Example

- Let E be an elliptic curve
- Let \mathfrak{L} be a (proper) split prime ideal of $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}$.
- Let ℓ be the norm of \mathfrak{L} .
- Goal: Evaluate the normalized horizontal isogeny $\phi_{\ell} \colon E \to E/\mathfrak{L}$.
- Note: $\mathfrak{L}\overline{\mathfrak{L}} = (\ell)$.
- Obtain the factorization of £ in the class group,
 [£] = [p₁]^{e₁} [p₂]^{e₂} ··· [p_n]^{e_n}, where p₁, ..., p_n are split prime ideals of small norm generating Cl(O_Δ).
- Compute

$$a) = \mathfrak{L}\overline{\mathfrak{p}}_1^{e_1}\overline{\mathfrak{p}}_2^{e_2}\cdots\overline{\mathfrak{p}}_n^{e_n} = \operatorname{Norm}(\mathfrak{p}_1)^{e_1} * \operatorname{Norm}(\mathfrak{p}_2)^{e_2} * \cdots * \operatorname{Norm}(\mathfrak{p}_n)^{e_n}(\alpha).$$

• Obtain $\mathfrak{L} = (\alpha)\mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\cdots\mathfrak{p}_n^{e_n}$, where $\alpha = a/m$.

- Let $\phi_c = \phi_{p_1}^{e_1} \phi_{p_2}^{e_2} \cdots \phi_{p_n}^{e_n} \colon E \to E_c$, where $E_c = E/E[\mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_n^{e_n}]$.
- Evaluate $\phi_c(P) \in E_c$ using old techniques recursively.
- Let $\alpha = (u + v\pi_q)/(zm)$, and using those values compute the isomorphism $\eta: E_c \to E'$, where $\eta^*(\omega_{E'}) = (u/zm)\omega_{E_c}$.
- Compute $Q = \eta(\phi_c(P))$.
- Compute $r = x((zm)^{-1}(u + v\pi_q)(Q))^{|\mathcal{O}_{\Delta}^*|/2}$.

- BCL algorithm scales very well as ℓ grows large, but not very well as $|\Delta|$ grows large.
- Bröker-Charles-Lauter do not give any runtime analysis of the ideal factorization step other than to say that it is polynomial time in |Δ|.
- Only works well with small discriminant curves (eg. pairing-friendly curves).

- \bullet Our algorithm uses techniques similar to BCL, but we speed up the algorithm by factoring $\mathfrak L$ in a more efficient manner.
- We use ideas from the subexponential class group discrete log algorithm by Hafner and McCurley to factor [£].

Our method for evaluating isogenies is based on factoring prime ideals. Given a prime ideal $\mathfrak{L} \subset \operatorname{End}(E)$:

- Choose an upper bound N.
- For each split prime $p_i < N$, let p_i be a prime ideal of norm p_i .
- Choose sparse exponents $e_i < (N/p_i)^2$ at random until

 $\mathsf{Reduce}(\mathfrak{L}\mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\cdots\mathfrak{p}_n^{e_n})$

factors completely into a product of the prime ideals p_i , where the number of nonzero exponents in the resulting factorization is small since the ideal is reduced.

- The above exponent bounds come from [Bisson-Sutherland 09].
- We used their bounds to take advantage of their runtime analysis, but many other choices of bounds also work.

Write

$$\mathsf{Reduce}(\mathfrak{L}\mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\cdots\mathfrak{p}_n^{e_n})=\mathfrak{p}_1^{f_1}\mathfrak{p}_2^{f_2}\cdots\mathfrak{p}_n^{f_n}$$

Then

$$[\mathfrak{L}] = [\mathfrak{p}_1]^{f_1 - e_1} [\mathfrak{p}_2]^{f_2 - e_2} \cdots [\mathfrak{p}_n]^{f_n - e_n}$$

Hence

$$\mathfrak{L} = (\alpha)\mathfrak{p}_1^{f_1 - e_1}\mathfrak{p}_2^{f_2 - e_2}\cdots\mathfrak{p}_n^{f_n - e_n}$$

for some principal fractional ideal (α).

 Evaluate the isogenies corresponding to (α), p₁, p₂,..., p_n to obtain the isogeny corresponding to L.

Definition (Subexponential time complexity)

For 0 $< \alpha <$ 1, define

$$L_n(lpha, c) = O(\exp((c + o(1))(\log n)^{lpha}(\log \log n)^{1-lpha})).$$

Theorem

Under the Generalized Riemann Hypothesis and additional heuristics, the optimal value for the bound N is $L_q(\frac{1}{2}, \frac{1}{2\sqrt{3}})$, and the expected time complexity of the overall algorithm is

$$\log(\ell)L_q(\frac{1}{2},\frac{\sqrt{3}}{2}).$$

Outline

Preliminaries

Isogenies

- Examples of isogenies
- Previous algorithms

2 Our algorithm

- Background: Bröker-Charles-Lauter algorithm
- Generalizing BCL to arbitrary curves

3 Example

An example

- p = 564538252084441556247016902735257
- $E: y^2 = x^3 + 321094768129147601892514872825668x + 430782315140218274262276694323197$ over \mathbb{F}_p
- $\ell = 282269126042220778123508451367753$
- End(E) = O_d where d = -1662463135200311258479604622103147 (n.b. this order is maximal)
- $\mathfrak{L} = (282269126042220778123508451367753, 2w + 105137660734123120905310489472470)$ where $w = \frac{1+\sqrt{d}}{2}$
- P = (97339010987059066523156133908935, 149670372846169285760682371978898)

Then, using Sutherland's smoothrelation program, we obtain

$$\mathfrak{L} = (\frac{\beta}{m})\bar{\mathfrak{p}}_{7}^{72}\bar{\mathfrak{p}}_{13}^{100}\bar{\mathfrak{p}}_{23}^{14}\bar{\mathfrak{p}}_{47}^{2}\bar{\mathfrak{p}}_{73}^{2}\bar{\mathfrak{p}}_{103}\mathfrak{p}_{179}\mathfrak{p}_{191}$$

Resulting curve E' and values of m, β and $\phi(P)$

$m = 7^{72} 13^{100} 23^{14} 47^2 73^2 103^1 179^1 191^1$

$$\begin{split} \beta &= 3383947601020121267815309931891893555677440374614137047492 \\ 9871512226041731462264847144426019711849448354422205800884837 \\ &- 1713152334033312180094376774440754045496152167352278262491 \\ &589014097167238827239427644476075704890979685 \cdot w \end{split}$$

Then $E' = y^2 = x^3 + 84081262962164770032033494307976x + 506928585427238387307510041944828$ and $\phi(P) = (450689656718652268803536868496211, \pm 345608697871189839292674734567941).$

- J. Hafner and K. McCurley. A rigorous subexponential algorithm for computation of class groups. J. Amer. Math. Soc., 2(4):837–850, 1989.
- R. Bröker, D. Charles, and K. Lauter. Evaluating large degree isogenies and applications to pairing based cryptography. In Pairing' 08: Proceedings of the 2nd international conference on Pairing-Based Cryptography, pages 100–112, Berlin, Heidelberg, 2008. Springer-Verlag.
- S. D. Galbraith, F. Hess, and N. P. Smart. Extending the GHS Weil descent attack. In Advances in cryptology—EUROCRYPT 2002 (Amsterdam), volume 2332 of Lecture Notes in Comput. Sci., pages 29–44. Springer, Berlin, 2002.
- G. Bisson and A. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, J. Num. Thy. 2009