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Isogenies

Let E and E ′ be elliptic curves over F .

An isogeny φ : E → E ′ is an algebraic morphism

φ(x , y) =

(
f1(x , y)

g1(x , y)
,

f2(x , y)

g2(x , y)

)
satisfying φ(∞) =∞.

Equivalently, an isogeny is an algebraic morphism which is a group
homomorphism.

The degree of an isogeny is its degree as an algebraic map.

The endomorphism ring End(E ) is the set of isogenies from E (F̄ ) to
itself. This set forms a ring under composition.
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Examples

Example (Scalar multiplication)

Let E : y 2 = x3 + ax + b.

For n ∈ Z, define [n] : E → E by [n](P) = nP. Then [n] is an isogeny.

When n = 2,

[2](x , y) =

(
x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
,

(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b − a)y

8(x3 + ax + b)2

)
The degree of [n] is n2.

The cardinality of ker([n]) is also n2.
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Examples

Example (Frobenius map)

Let F = Fq be a finite field.

Define π : E → E by
π(x , y) = (xq, yq).

π is an algebraic map and a group homomorphism, hence an isogeny.

deg(π) = q, but # ker(π) = 1.

The reason for this strange behavior is because π is inseparable.
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Examples

Example (Dual isogenies)

Let F = F109.

Let E1 : y 2 = x3 + 2x + 2 and E2 : y 2 = x3 + 34x + 45. An isogeny
φ : E1 → E2 (of degree 3) is given by

φ(x , y) =

(
x3 + 20x2 + 50x + 6

x2 + 20x + 100
,

(x3 + 30x2 + 23x + 52)y

x3 + 30x2 + 82x + 19

)
.

There exists an isogeny φ̂ : E2 → E1, given by

φ̂(x , y) =

(
x3 + 49x2 + 46x + 104

9x2 + 5x + 34
,

(x3 + 19x2 + 66x + 47)y

27x3 + 77x2 + 88x + 101

)
,

satisfying φ ◦ φ̂ = [3] and φ̂ ◦ φ = [3].

φ̂ is the dual isogeny of φ and vice-versa.
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Examples

Example (Complex multiplication)

Let E : y 2 = x3 − x be defined over F .

Let i ∈ F be a square root of −1.

Define
φ(x , y) = (−x , iy).

Then φ ◦ φ = [−1], and we have an inclusion Z[i ] ↪→ End(E ).
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Overview

Isogenies between elliptic curves over finite fields have many
applications in cryptography and number theory.

For many of these applications, it is necessary to evaluate large
degree isogenies explicitly. Large means ` ' 2100.

[n] : E → E is easy to evaluate using double-and-add.

Inseparable isogenies (i.e., Frobenius maps) are easy to evaluate:
compute xq using square-and-multiply.

Linear combinations and compositions of easy to evaluate isogenies
(scalar multiplication, frobenius map, complex multiplication by a
small discriminant, small degree isogenies) are easy to evaluate.

All other large degree isogenies are infeasible to evaluate via any
obvious algorithms.
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Ordinary curves

Theorem

Let E be an elliptic curve defined over a finite field. As a Z-module,
dimZ End(E ) is equal to either 2 or 4.

Definition

An elliptic curve E over a finite field is supersingular if dimZ End(E ) = 4,
and ordinary otherwise.

Ordinary curves are more secure for cryptography.

Isogenous curves are always either both ordinary, or both
supersingular.

For the rest of this talk, we assume all curves are ordinary.
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Useful facts

Theorem (Tate)

For any two curves E1 and E2 defined over Fq, there exists an isogeny
from E1 to E2 over Fq if and only if t(E1) = t(E2) (equivalently, if and
only if #E1(Fq) = #E2(Fq)).

Remark: The trace of E can be computed in polynomial time (Schoof).

D. Jao and V. Soukharev (U. of Waterloo) Evaluating isogenies in subexponential time July 19, 2010 10 / 27



More useful facts

Let φ : E → E ′ be a separable isogeny.

E ′ ∼= E/ ker φ.

ker φ is an ideal of End(E ).

Up to isomorphism, the ideal ker φ uniquely determines φ.
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Horizontal isogenies

Definition

An isogeny which maps between E and E ′, such that
End(E ) = End(E ′) is called a horizontal isogeny.

Theorem

There is a 1-1 correspondence between horizontal isogenies
φ : E → E ′ and proper ideals Iφ ⊂ End(E ).

Iφ◦ψ = IφIψ.

deg φ equals the norm of Iφ.
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The old, slow way

Let E : y 2 = x3 + ax + b, and let Iφ = L ⊂ End(E ) be a non-inert prime
ideal of norm `. (Note: ` is prime.)

Denote by Φ`(X ,Y ) the classical modular polynomial of level `.

Solve Φ`(j(E ),Y ) = 0 for Y . Let h be a solution.

Set

s = −18b

`a

∂Φ
∂X (j(E ), h)
∂Φ
∂Y (j(E ), h)

j(E ) ∈ Fq

a′ = − 1

48

s2

h(h − 1728)
∈ Fq

b′ = − 1

864

s3

h2(h − 1728)
∈ Fq

Then the equation for E ′ is y 2 = x3 + a′x + b′.

The equation for φ is also known (and is even more complicated).
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Classical modular polynomials

Φ2(X , Y ) = X 3 − X 2Y 2 + 1488X 2Y − 162000X 2 + 1488XY 2 + 40773375XY + 8748000000X + Y 3 − 162000Y 2

+ 8748000000Y − 157464000000000

Φ3(X , Y ) = X 4 − X 3Y 3 + 2232X 3Y 2 − 1069956X 3Y + 36864000X 3 + 2232X 2Y 3 + 2587918086X 2Y 2

+ 8900222976000X 2Y + 452984832000000X 2 − 1069956XY 3 + 8900222976000XY 2 − 770845966336000000XY

+ 1855425871872000000000X + Y 4 + 36864000Y 3 + 452984832000000Y 2 + 1855425871872000000000Y

Φ5(X , Y ) = X 6 − X 5Y 5 + 3720X 5Y 4 − 4550940X 5Y 3 + 2028551200X 5Y 2 − 246683410950X 5Y + 1963211489280X 5

+ 3720X 4Y 5 + 1665999364600X 4Y 4 + 107878928185336800X 4Y 3 + 383083609779811215375X 4Y 2

+ 128541798906828816384000X 4Y + 1284733132841424456253440X 4 − 4550940X 3Y 5

+ 107878928185336800X 3Y 4 − 441206965512914835246100X 3Y 3 + 26898488858380731577417728000X 3Y 2

− 192457934618928299655108231168000X 3Y + 280244777828439527804321565297868800X 3 + 2028551200X 2Y 5

+ 383083609779811215375X 2Y 4 + 26898488858380731577417728000X 2Y 3

+ 5110941777552418083110765199360000X 2Y 2 + 36554736583949629295706472332656640000X 2Y

+ 6692500042627997708487149415015068467200X 2 − 246683410950XY 5 + 128541798906828816384000XY 4

− 192457934618928299655108231168000XY 3 + 36554736583949629295706472332656640000XY 2

− 264073457076620596259715790247978782949376XY + 53274330803424425450420160273356509151232000X

+ Y 6 + 1963211489280Y 5 + 1284733132841424456253440Y 4 + 280244777828439527804321565297868800Y 3

+ 6692500042627997708487149415015068467200Y 2 + 53274330803424425450420160273356509151232000Y

+ 141359947154721358697753474691071362751004672000
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Computing modular polynomials

Clearly, computing Φ`(X ,Y ) is infeasible for large `.

Theoretical complexity: O(`3+ε)

World record over Z: ` ≈ 10000 (Enge, 2007)

World record over Zp: ` ≈ 20000 (Bröker, Lauter, Sutherland, 2010)

Our goal: ` ' 2100
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BCL algorithm

Let E be an elliptic curve

Let L be a (proper) split prime ideal of End(E ) ∼= O∆.

Let ` be the norm of L.

Goal: Evaluate the normalized horizontal isogeny φ` : E → E/L.

Note: LL̄ = (`).

Obtain the factorization of L in the class group,
[L] = [p1]e1 [p2]e2 · · · [pn]en , where p1, . . . , pn are split prime ideals of
small norm generating Cl(O∆).

Compute
(a) = Lp̄e1

1 p̄e2
2 · · · p̄enn = Norm(p1)e1 ∗Norm(p2)e2 ∗ · · · ∗Norm(pn)en(α).

Obtain L = (α)pe1
1 pe2

2 · · · penn , where α = a/m.
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BCL algorithm (cont’d)

Let φc = φe1
p1
φe2
p2
· · ·φenpn : E → Ec , where Ec = E/E [pe1

1 pe2
2 · · · penn ].

Evaluate φc(P) ∈ Ec using old techniques recursively.

Let α = (u + vπq)/(zm), and using those values compute the
isomorphism η : Ec → E ′, where η∗(ωE ′) = (u/zm)ωEc .

Compute Q = η(φc(P)).

Compute r = x((zm)−1(u + vπq)(Q))|O
∗
∆|/2.

D. Jao and V. Soukharev (U. of Waterloo) Evaluating isogenies in subexponential time July 19, 2010 18 / 27



Drawbacks of BCL algorithm

BCL algorithm scales very well as ` grows large, but not very well as
|∆| grows large.

Bröker-Charles-Lauter do not give any runtime analysis of the ideal
factorization step other than to say that it is polynomial time in |∆|.
Only works well with small discriminant curves (eg. pairing-friendly
curves).
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Idea of our algorithm

Our algorithm uses techniques similar to BCL, but we speed up the
algorithm by factoring L in a more efficient manner.

We use ideas from the subexponential class group discrete log
algorithm by Hafner and McCurley to factor [L].
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Factoring ideals

Our method for evaluating isogenies is based on factoring prime ideals.
Given a prime ideal L ⊂ End(E ):

Choose an upper bound N.

For each split prime pi < N, let pi be a prime ideal of norm pi .

Choose sparse exponents ei < (N/pi )
2 at random until

Reduce(Lpe1
1 pe2

2 · · · p
en
n )

factors completely into a product of the prime ideals pi , where the
number of nonzero exponents in the resulting factorization is small
since the ideal is reduced.

The above exponent bounds come from [Bisson-Sutherland 09].

We used their bounds to take advantage of their runtime analysis, but
many other choices of bounds also work.
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Factoring ideals (cont’d)

Write
Reduce(Lpe1

1 pe2
2 · · · p

en
n ) = pf11 p

f2
2 · · · p

fn
n

Then
[L] = [p1]f1−e1 [p2]f2−e2 · · · [pn]fn−en

Hence
L = (α)pf1−e1

1 pf2−e2
2 · · · pfn−enn

for some principal fractional ideal (α).

Evaluate the isogenies corresponding to (α), p1, p2, . . . , pn to obtain
the isogeny corresponding to L.
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Complexity of the algorithm

Definition (Subexponential time complexity)

For 0 < α < 1, define

Ln(α, c) = O(exp((c + o(1))(log n)α(log log n)1−α)).

Theorem

Under the Generalized Riemann Hypothesis and additional heuristics, the
optimal value for the bound N is Lq( 1

2 ,
1

2
√

3
), and the expected time

complexity of the overall algorithm is

log(`)Lq( 1
2 ,
√

3
2 ).
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An example

p = 564538252084441556247016902735257

E : y 2 = x3 + 321094768129147601892514872825668x +
430782315140218274262276694323197 over Fp

` = 282269126042220778123508451367753

End(E ) = Od where d = −1662463135200311258479604622103147
(n.b. this order is maximal)

L = (282269126042220778123508451367753, 2w +

105137660734123120905310489472470) where w = 1+
√
d

2

P = (97339010987059066523156133908935,
149670372846169285760682371978898)

Then, using Sutherland’s smoothrelation program, we obtain

L = ( βm )p̄72
7 p̄100

13 p̄14
23p̄

2
47p̄

2
73p̄103p179p191
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Resulting curve E ′ and values of m, β and φ(P)

m = 772131002314472732103117911911

β = 3383947601020121267815309931891893555677440374614137047492\
9871512226041731462264847144426019711849448354422205800884837

− 1713152334033312180094376774440754045496152167352278262491\
589014097167238827239427644476075704890979685 · w

Then E ′ = y 2 = x3 + 84081262962164770032033494307976x +
506928585427238387307510041944828 and
φ(P) = (450689656718652268803536868496211,
±345608697871189839292674734567941).
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