Evaluating large degree isogenies in subexponential time

David Jao and Vladimir Soukharev

University of Waterloo

July 19, 2010

D. Jao and V. Soukharev (U. of Waterloo) [Evaluating isogenies in subexponential time](#page-26-0) July 19, 2010 1/27

Outline

[Preliminaries](#page-2-0)

- [Isogenies](#page-2-0)
- [Examples of isogenies](#page-3-0)
- [Previous algorithms](#page-12-0)

2 [Our algorithm](#page-15-0)

- Background: Bröker-Charles-Lauter algorithm
- **• [Generalizing BCL to arbitrary curves](#page-19-0)**

[Example](#page-23-0)

- Let E and E' be elliptic curves over F .
- An *isogeny* $\phi \colon E \to E'$ is an algebraic morphism

$$
\phi(x,y) = \left(\frac{f_1(x,y)}{g_1(x,y)}, \frac{f_2(x,y)}{g_2(x,y)}\right)
$$

satisfying $\phi(\infty) = \infty$.

- Equivalently, an isogeny is an algebraic morphism which is a group homomorphism.
- The *degree* of an isogeny is its degree as an algebraic map.
- The endomorphism ring End(E) is the set of isogenies from $E(\bar{F})$ to itself. This set forms a ring under composition.

Example (Scalar multiplication)

- Let $E: y^2 = x^3 + ax + b$.
- For $n \in \mathbb{Z}$, define $[n]: E \to E$ by $[n](P) = nP$. Then $[n]$ is an isogeny.
- When $n = 2$,

$$
[2](x,y) = \left(\frac{x^4 - 2ax^2 - 8bx + a^2}{4(x^3 + ax + b)}, \frac{(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b - a)y}{8(x^3 + ax + b)^2}\right)
$$

- The degree of $[n]$ is n^2 .
- The cardinality of ker($[n]$) is also n^2 .

Example (Frobenius map)

- Let $F = \mathbb{F}_q$ be a finite field.
- Define $\pi: E \to E$ by

$$
\pi(x,y)=(x^q,y^q).
$$

 \bullet π is an algebraic map and a group homomorphism, hence an isogeny.

$$
\bullet\;\deg(\pi)=q,\;\mathsf{but}\;\#\ker(\pi)=1.
$$

The reason for this strange behavior is because π is *inseparable*.

Examples

Example (Dual isogenies)

- Let $F = \mathbb{F}_{109}$.
- Let E_1 : $y^2 = x^3 + 2x + 2$ and E_2 : $y^2 = x^3 + 34x + 45$. An isogeny ϕ : $E_1 \rightarrow E_2$ (of degree 3) is given by

$$
\phi(x,y) = \left(\frac{x^3 + 20x^2 + 50x + 6}{x^2 + 20x + 100}, \frac{(x^3 + 30x^2 + 23x + 52)y}{x^3 + 30x^2 + 82x + 19}\right)
$$

• There exists an isogeny $\hat{\phi}$: $E_2 \rightarrow E_1$, given by

$$
\hat{\phi}(x,y) = \left(\frac{x^3 + 49x^2 + 46x + 104}{9x^2 + 5x + 34}, \frac{(x^3 + 19x^2 + 66x + 47)y}{27x^3 + 77x^2 + 88x + 101}\right),
$$

satisfying
$$
\phi \circ \hat{\phi} = [3]
$$
 and $\hat{\phi} \circ \phi = [3]$.

 \bullet $\hat{\phi}$ is the *dual isogeny* of ϕ and vice-versa.

 Ω

.

Example (Complex multiplication)

- Let $E: y^2 = x^3 x$ be defined over F.
- Let $i \in F$ be a square root of -1 .
- **o** Define

$$
\phi(x,y)=(-x,iy).
$$

• Then $\phi \circ \phi = [-1]$, and we have an inclusion $\mathbb{Z}[i] \hookrightarrow \text{End}(E)$.

- Isogenies between elliptic curves over finite fields have many applications in cryptography and number theory.
- For many of these applications, it is necessary to evaluate large degree isogenies explicitly. Large means $\ell \gtrapprox 2^{100}.$
- $[n]: E \to E$ is easy to evaluate using double-and-add.
- Inseparable isogenies (i.e., Frobenius maps) are easy to evaluate: compute x^q using square-and-multiply.
- Linear combinations and compositions of easy to evaluate isogenies (scalar multiplication, frobenius map, complex multiplication by a small discriminant, small degree isogenies) are easy to evaluate.
- All other large degree isogenies are infeasible to evaluate via any obvious algorithms.

Theorem

Let E be an elliptic curve defined over a finite field. As a $\mathbb Z$ -module, $\dim_{\mathbb{Z}}$ End(E) is equal to either 2 or 4.

Definition

An elliptic curve E over a finite field is *supersingular* if $\dim_{\mathbb{Z}} End(E) = 4$, and ordinary otherwise.

- Ordinary curves are more secure for cryptography.
- Isogenous curves are always either both ordinary, or both supersingular.
- For the rest of this talk, we assume all curves are ordinary.

Theorem (Tate)

For any two curves E_1 and E_2 defined over \mathbb{F}_q , there exists an isogeny from E_1 to E_2 over \mathbb{F}_q if and only if $t(E_1) = t(E_2)$ (equivalently, if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$.

Remark: The trace of E can be computed in polynomial time (Schoof).

つへへ

Let $\phi: E \to E'$ be a separable isogeny.

- $E' \cong E/\ker \phi$.
- ker ϕ is an ideal of End(E).
- Up to isomorphism, the ideal ker ϕ uniquely determines ϕ .

Definition

An isogeny which maps between E and E^{\prime} , such that $\textsf{End}(E)=\textsf{End}(E')$ is called a horizontal isogeny.

Theorem

- There is a 1-1 correspondence between horizontal isogenies $\phi\colon E\to E'$ and proper ideals $\mathfrak I_\phi\subset \mathsf{End}(E).$
- $\mathfrak{I}_{\phi\circ\psi} = \mathfrak{I}_{\phi}\mathfrak{I}_{\psi}.$
- • deg ϕ equals the norm of \mathfrak{I}_{ϕ} .

The old, slow way

Let E : $y^2 = x^3 + ax + b$, and let $\mathfrak{I}_\phi = \mathfrak{L} \subset \mathsf{End}(E)$ be a non-inert prime ideal of norm ℓ . (Note: ℓ is prime.)

- Denote by $\Phi_{\ell}(X, Y)$ the classical modular polynomial of level ℓ .
- Solve $\Phi_{\ell}(i(E), Y) = 0$ for Y. Let h be a solution.

Set

$$
s = -\frac{18b}{\ell a} \frac{\frac{\partial \Phi}{\partial X}(j(E), h)}{\frac{\partial \Phi}{\partial Y}(j(E), h)} j(E) \in \mathbb{F}_q
$$

$$
a' = -\frac{1}{48} \frac{s^2}{h(h - 1728)} \in \mathbb{F}_q
$$

$$
b' = -\frac{1}{864} \frac{s^3}{h^2(h - 1728)} \in \mathbb{F}_q
$$

- Then the equation for E' is $y^2 = x^3 + a'x + b'$.
- The equati[o](#page-11-0)nfor ϕ ϕ ϕ is also known (and is e[ven](#page-11-0) [m](#page-13-0)o[re](#page-12-0) [co](#page-11-0)[m](#page-14-0)p[li](#page-1-0)[c](#page-2-0)[a](#page-14-0)[t](#page-15-0)[ed](#page-0-0)[\).](#page-26-0)

Classical modular polynomials

 $\Phi_2(X, Y) = X^3 - X^2Y^2 + 1488X^2Y - 162000X^2 + 1488XY^2 + 40773375XY + 8748000000X + Y^3 - 162000Y^2$ $+ 8748000000Y - 15746400000000$ $\Phi_3(X, Y) = X^4 - X^3Y^3 + 2232X^3Y^2 - 1069956X^3Y + 36864000X^3 + 2232X^2Y^3 + 2587918086X^2Y^2$ $+ \ 8900222976000 X^2 Y + 452984832000000 X^2 - 1069956 XY^3 + 8900222976000 X Y^2 - 770845966336000000 X Y^3$ $+~1855425871872000000000X+Y^4+36864000Y^3+452984832000000Y^2+1855425871872000000000Y^2$ $\Phi_5(X,Y)=X^6-X^5Y^5+3720X^5Y^4-4550940X^5Y^3+2028551200X^5Y^2-246683410950X^5Y+1963211489280X^5Y^4$ $+$ 3720 x^4Y^5+ 1665999364600 x^4Y^4+ 107878928185336800 x^4Y^3+ 383083609779811215375 x^4Y^2 $+$ 128541798906828816384000 x^{4} Y $+$ 1284733132841424456253440 x^{4} $-$ 4550940 x^{3} Y 5 $+$ 107878928185336800 χ^3 χ^4 $-$ 441206965512914835246100 χ^3 χ^3 $+$ 26898488858380731577417728000 χ^3 χ^2 $-$ 192457934618928299655108231168000 X^3 Y + 280244777828439527804321565297868800 X^3 + 2028551200 X^2 Y 5 $+~383083609779811215375X^2Y^4 + 26898488858380731577417728000X^2Y^3$ $+$ 5110941777552418083110765199360000 x^2 Y 2 $+$ 36554736583949629295706472332656640000 x^2 Y $+$ 6692500042627997708487149415015068467200 χ^2- 246683410950 χ Y $^5+$ 128541798906828816384000 χ Y 4 $-$ 192457934618928299655108231168000 $XY^3 +$ 36554736583949629295706472332656640000 XY^2 $-264073457076620596259715790247978782949376XY + 53274330803424425450420160273356509151232000X$ $+\;Y^6 + 1963211489280 Y^5 + 1284733132841424456253440 Y^4 + 280244777828439527804321565297868800 Y^3$ $+ \ 6692500042627997708487149415015068467200\,{Y}^{2}+53274330803424425450420160273356509151232000\,{Y}^{2}$ $+141359947154721358697753474691071362751004672000$ K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q Q

- Clearly, computing $\Phi_{\ell}(X, Y)$ is infeasible for large ℓ .
- Theoretical complexity: $O(\ell^{3+\varepsilon})$
- World record over \mathbb{Z} : $\ell \approx 10000$ (Enge, 2007)
- World record over \mathbb{Z}_p : $\ell \approx 20000$ (Bröker, Lauter, Sutherland, 2010)
- Our goal: $\ell \gtrapprox 2^{100}$

[Preliminaries](#page-2-0)

· [Isogenies](#page-2-0)

- **•** [Examples of isogenies](#page-3-0)
- [Previous algorithms](#page-12-0)

2 [Our algorithm](#page-15-0)

- Background: Bröker-Charles-Lauter algorithm
- **• [Generalizing BCL to arbitrary curves](#page-19-0)**

3 [Example](#page-23-0)

- \bullet Let E be an elliptic curve
- Let $\mathfrak L$ be a (proper) split prime ideal of End(E) $\cong \mathcal O_{\Lambda}$.
- **o** Let ℓ be the norm of \mathfrak{L} .
- Goal: Evaluate the normalized horizontal isogeny $\phi_\ell\colon E\to E/\mathfrak{L}.$
- Note: $\mathfrak{L}\bar{\mathfrak{L}} = (\ell)$.
- Obtain the factorization of $\mathfrak L$ in the class group, $[\mathfrak{L}]=[\mathfrak{p}_1]^{e_1}[\mathfrak{p}_2]^{e_2}\cdots[\mathfrak{p}_n]^{e_n}$, where $\mathfrak{p}_1,\ldots,\mathfrak{p}_n$ are split prime ideals of small norm generating $Cl(\mathcal{O}_\Lambda)$.
- **•** Compute

$$
(a)=\mathfrak{L}\bar{\mathfrak{p}}_1^{e_1}\bar{\mathfrak{p}}_2^{e_2}\cdots \bar{\mathfrak{p}}_n^{e_n}=\text{Norm}(\mathfrak{p}_1)^{e_1}*\text{Norm}(\mathfrak{p}_2)^{e_2}*\cdots*\text{Norm}(\mathfrak{p}_n)^{e_n}(\alpha).
$$

Obtain $\mathfrak{L} = (\alpha) \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_n^{e_n}$, where $\alpha = a/m$.

Let $\phi_c = \phi_{p_1}^{e_1} \phi_{p_2}^{e_2} \cdots \phi_{p_n}^{e_n}$: $E \to E_c$, where $E_c = E/E[\mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_n^{e_n}]$.

- Evaluate $\phi_c(P) \in E_c$ using old techniques recursively.
- Let $\alpha = (u + v\pi_q)/(zm)$, and using those values compute the isomorphism $\eta\colon E_c\to E'$, where $\eta^*(\omega_{E'})=(u/zm)\omega_{E_c}.$
- Compute $Q = \eta(\phi_c(P))$.
- Compute $r = x((zm)^{-1}(u + v\pi_q)(Q))^{|\mathcal{O}_\Delta^*|/2}.$
- BCL algorithm scales very well as ℓ grows large, but not very well as |∆| grows large.
- Bröker-Charles-Lauter do not give any runtime analysis of the ideal factorization step other than to say that it is polynomial time in $|\Delta|$.
- Only works well with small discriminant curves (eg. pairing-friendly curves).

- Our algorithm uses techniques similar to BCL, but we speed up the algorithm by factoring $\mathfrak L$ in a more efficient manner.
- We use ideas from the subexponential class group discrete log algorithm by Hafner and McCurley to factor $[\mathfrak{L}]$.

Our method for evaluating isogenies is based on factoring prime ideals. Given a prime ideal $\mathfrak{L} \subset \mathsf{End}(E)$:

- Choose an upper bound N.
- For each split prime $p_i < N$, let \mathfrak{p}_i be a prime ideal of norm p_i .
- Choose *sparse* exponents $e_i < (N/p_i)^2$ at random until

Reduce $(\mathfrak{L} \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_n^{e_n})$

factors completely into a product of the prime ideals \mathfrak{p}_i , where the number of nonzero exponents in the resulting factorization is small since the ideal is reduced.

- The above exponent bounds come from [Bisson-Sutherland 09].
- We used their bounds to take advantage of their runtime analysis, but many other choices of bounds also work.

Write

$$
\mathsf{Reduce}(\mathfrak{L} \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_n^{e_n}) = \mathfrak{p}_1^{f_1} \mathfrak{p}_2^{f_2} \cdots \mathfrak{p}_n^{f_n}
$$

Then

$$
[\mathfrak{L}] = [\mathfrak{p}_1]^{f_1 - e_1} [\mathfrak{p}_2]^{f_2 - e_2} \cdots [\mathfrak{p}_n]^{f_n - e_n}
$$

o Hence

$$
\mathfrak{L}=(\alpha)\mathfrak{p}_1^{f_1-e_1}\mathfrak{p}_2^{f_2-e_2}\cdots \mathfrak{p}_n^{f_n-e_n}
$$

for some principal fractional ideal (α) .

• Evaluate the isogenies corresponding to (α) , \mathfrak{p}_1 , $\mathfrak{p}_2, \ldots, \mathfrak{p}_n$ to obtain the isogeny corresponding to \mathfrak{L} .

Definition (Subexponential time complexity)

For $0 < \alpha < 1$, define

$$
L_n(\alpha, c) = O(\exp((c + o(1))(\log n)^{\alpha}(\log \log n)^{1-\alpha})).
$$

Theorem

Under the Generalized Riemann Hypothesis and additional heuristics, the optimal value for the bound N is $L_q(\frac{1}{2})$ $\frac{1}{2}, \frac{1}{2\nu}$ $\frac{1}{2\sqrt{3}}$), and the expected time complexity of the overall algorithm is

$$
\log(\ell)L_q(\frac{1}{2},\frac{\sqrt{3}}{2}).
$$

つへへ

Outline

[Preliminaries](#page-2-0)

· [Isogenies](#page-2-0)

- **•** [Examples of isogenies](#page-3-0)
- [Previous algorithms](#page-12-0)

[Our algorithm](#page-15-0)

- · Background: Bröker-Charles-Lauter algorithm
- **• [Generalizing BCL to arbitrary curves](#page-19-0)**

[Example](#page-23-0)

An example

- $p = 564538252084441556247016902735257$
- $E: y^2 = x^3 + 321094768129147601892514872825668x +$ 430782315140218274262276694323197 over \mathbb{F}_p
- $\bullet \ell = 282269126042220778123508451367753$
- End(E) = \mathcal{O}_d where $d = -1662463135200311258479604622103147$ (n.b. this order is maximal)
- $\mathcal{L} = (282269126042220778123508451367753, 2w +$ \approx – (2022001200 122011012000 10101100, 2W + $105137660734123120905310489472470$) where $w = \frac{1+\sqrt{d}}{2}$ 2
- \bullet $P = (97339010987059066523156133908935,$ 149670372846169285760682371978898)

Then, using Sutherland's smoothrelation program, we obtain

$$
\mathfrak{L}=(\tfrac{\beta}{m})\bar{\mathfrak{p}}_7^{72}\bar{\mathfrak{p}}_{13}^{100}\bar{\mathfrak{p}}_{23}^{14}\bar{\mathfrak{p}}_{47}^{2}\bar{\mathfrak{p}}_{73}^{2}\bar{\mathfrak{p}}_{103}\mathfrak{p}_{179}\mathfrak{p}_{191}
$$

つひひ

Resulting curve E' and values of m , β and $\phi(P)$

$m = 7^{72}13^{100}23^{14}47^273^2103^1179^1191^1$

 $\beta = 3383947601020121267815309931891893555677440374614137047492\$ 9871512226041731462264847144426019711849448354422205800884837 − 1713152334033312180094376774440754045496152167352278262491\ 589014097167238827239427644476075704890979685 · w

Then $E'=y^2=x^3+84081262962164770032033494307976x+$ 506928585427238387307510041944828 and $\phi(P) = (450689656718652268803536868496211,$ ±345608697871189839292674734567941).

- J. Hafner and K. McCurley. A rigorous subexponential algorithm for computation of class groups. J. Amer. Math. Soc., 2(4):837–850, 1989.
- R. Bröker, D. Charles, and K. Lauter. Evaluating large degree isogenies and applications to pairing based cryptography. In Pairing' 08: Proceedings of the 2nd international conference on Pairing-Based Cryptography, pages 100–112, Berlin, Heidelberg, 2008. Springer-Verlag.
- S. D. Galbraith, F. Hess, and N. P. Smart. Extending the GHS Weil descent attack. In Advances in cryptology—EUROCRYPT 2002 (Amsterdam), volume 2332 of Lecture Notes in Comput. Sci., pages 29–44. Springer, Berlin, 2002.
- G. Bisson and A. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, J. Num. Thy. 2009