Sieving for pseudosquares and pseudocubes in parallel using doubly-focused enumeration and wheel datastructures

Jon Sorenson sorenson@butler.edu http://www.butler.edu/~sorenson

Computer Science & Software Engineering Butler University Indianapolis, Indiana USA

ANTS IX @ Nancy, France, July 2010

Outline

- 2 Computational Results
- Oistribution of Pseudo-powers
- 4 Algorithm Outline
 - Doubly-Focused Enumeration
 - Parallelization
 - Wheel Datastructure
- 5 Future Work & Acknowledgements

Pseudosquares

з

э

∢∄⊁ ∢≣⊁

Pseudosquares

Let (x/y) denote the Legendre symbol. For an odd prime p, let $L_{p,2}$, the pseudosquare for p, be the smallest positive integer such that

•
$$L_{p,2}\equiv 1 \pmod{8}$$
,

②
$$(L_{p,2}/q)=1$$
 for every odd prime $q\leq p$, and

3 $L_{p,2}$ is not a perfect square.

Finding pseudosquares is motivated by the pseudosquares primality test.

Pseudosquares Prime Test (Lukes, Patterson, Williams 1996)

Let n, s be positive integers. If

• All prime divisors of *n* exceed *s*,

•
$$n/s < L_{p,2}$$
 for some prime p ,

• $p_i^{(n-1)/2} \equiv \pm 1 \pmod{n}$ for all primes $p_i \leq p$, and

•
$$2^{(n-1)/2} \equiv -1 \pmod{n}$$
 when $n \equiv 5 \pmod{8}$, or $p_i^{(n-1)/2} \equiv -1 \pmod{n}$ for some prime $p_i \leq p$ when $n \equiv 1 \pmod{8}$,

then n is prime or a prime power.

This combines nicely with trial division up to s or, even better, sieving by primes up to s over an interval.

Pseudocubes

< □ > < □ > < □ > < □</p>

з

Pseudocubes

For an odd prime p, let $L_{p,3}$, the pseudocube for p, be the smallest positive integer such that

•
$$L_{p,3} \equiv \pm 1 \pmod{9}$$
,

- 2 $L_{p,3}^{(q-1)/3} \equiv 1 \pmod{q}$ for every prime $q \leq p$, $q \equiv 1 \pmod{3}$,
- **3** $gcd(L_{p,3},q) = 1$ for every prime $q \leq p$, and
- $L_{p,3}$ is not a perfect cube.
 - There is a pseudocube primality test (Berrizbeitia, Müller, Williams 2004).
 - See also the next talk.

伺 ト く ヨ ト く ヨ ト

Computational Results: New Pseudosquares

New Pseudosquares								
	р	L _{p,2}						
	367	36553 34429 47705 74600 46489						
	373	42350 25223 08059 75035 19329						
	379	> 10 ²⁵						

- Previous bound was $L_{367,2}>120120\times2^{64}\approx2.216\times10^{24}$ by Wooding & Williams, 2006.
- L_{367,2} and L_{373,2} were found in 2008 using 3 months (wall time) on Butler's *Big Dawg* cluster supercomputer.
- Extending the computation to 10²⁵ took another 6 months time, finishing on January 1st 2010.

Computational Results: New Pseudocubes

INCW I SCUUDCUDCS	Ν	lew	Pseudo	cubes
-------------------	---	-----	--------	-------

р	L _{p,3}
499	601 25695 21674 16551 89317
523,541	1166 14853 91487 02789 15947
547	41391 50561 50994 78852 27899
571,577	1 62485 73199 87995 69143 39717
601,607	2 41913 74719 36148 42758 90677
613	67 44415 80981 24912 90374 06633
619	> 10 ²⁷

- This took 6 months of wall time in 2009.
- $L_{499,3} > 1.45152 \times 10^{22}$ was previously found by Wooding & Williams, 2006.

Conjectured Growth Rates

- Let p_i denote the *i*th prime, and
- Let q_i denote the *i*th prime such that $q_i \equiv 1 \pmod{3}$.

Using reasonable heuristics, it is conjectured that there exist constants $c_2, c_3 > 0$ such that

$$L_{p_n,2} \approx c_2 2^n \log p_n,$$

$$L_{q_n,3} \approx c_3 3^n (\log q_n)^2.$$

(Lukes, Patterson, Williams 1996) (Berrizbeitia, Müller, Williams 2004)

Conjectured Growth Rates

Let us define

$$c_2(n) := \frac{L_{p_n,2}}{2^n \log p_n}, c_3(n) := \frac{L_{q_n,3}}{3^n (\log q_n)^2}.$$

We find that

• $5 < c_2(n) < 162$ for $n \le 74$ (averaging around 45), and

• $0.05 < c_3(n) < 6.5$ for $10 \le n \le 53$ (averaging around 1.22). Note that

$$L_{p_n,2} = L_{p_{n+1},2} = \cdots = L_{p_{n+k},2}$$

for $k \ge 1$ can occur. (See proceedings page 334.)

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Algorithm Outline

- Doubly-Focused Enumeration
- Parallelized by target interval
- Space-saving Wheel Datastructure

We'll focus on pseudosquares for the remainder of the talk.

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Doubly-Focused Enumeration

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Doubly-Focused Enumeration (Bernstein 2004)

Every integer x, with $0 \le x \le H$, can be written in the form

$$x = t_p M_n - t_n M_p$$

where

•
$$gcd(M_p, M_n) = 1$$
,
• $0 \le t_p \le \frac{H + M_n M_p}{M_n}$,
• and $0 \le t_n < M_n$.

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Doubly-Focused Enumeration

We used

- $M_{p} = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 53 \cdot 89$
 - $= 2057\,04617\,33829\,17717$ and
- $M_n = 8 \cdot 3 \cdot 5 \cdot 47 \cdot 59 \cdot 61 \cdot 67 \cdot 71 \cdot 73 \cdot 79 \cdot 83 \cdot 97$
 - = 4483 25952 77215 26840.

- 4 同 6 4 日 6 4 日 6

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Parallelization

We parallelized over t_p intervals:

- Each processor was assigned an interval [a, b],
- Find all t_p values, $a \le t_p \le b$ and sort them.
- Compute a range of *t_n* values to correspond.
- Generate the *t_n* values (out of order).
- Compute an x value (implicitly at first) using binary search on the t_p list, and sieve/test it.

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Wheel Datastructure

Jon Sorenson

Finding Pseudopowers

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Wheel Datastructure Example

We will generate squares modulo $24 \cdot 5 \cdot 7 = 840$. Note that all must be 1 mod 24.

T	able for	5 (n	nodul	us 24	$\Xi 4$	mod
			1			
	square	0	1	0	0	1
	square jump	24	48	24	48	72

Table for 7 (modulus $120 = 24 \cdot 5 \equiv 1 \mod 7$)									
	0	1	2	3	4	5	6		
square	0	1	1	0	1	0	0		
square jump	120	120	240	120	480	360	240		

з

・ 同 ト ・ ヨ ト ・ ヨ ト

Doubly-Focused Enumeration Parallelization Wheel Datastructure

Example continued

~		~	
(-onc)	rating	g Squares	
Gene			

24	5	7			
1	1	1	121	361	(841) (1009)
	49	169	289	529	(1009)
	(121)				

We get the list

1, 121, 361, 169, 289, 529

of squares modulo $24 \cdot 5 \cdot 7 = 840$.

▲ 同 ▶ → 三 ▶

э

-

Future Work

Jon Sorenson Finding Pseudopowers

2

Future Work

GPUs!!

▲□▶ ▲□▶ ▲ □▶ ▲

з

э

- For your attention
- To the organizers
- To the Holcomb Awards Committee for \$\$
- To Frank Levinson for the supercomputer

A ►