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Pseudosquares

Let (x/y) denote the Legendre symbol.
For an odd prime p, let Lp,2, the pseudosquare for p, be the
smallest positive integer such that

1 Lp,2 ≡ 1 (mod 8),

2 (Lp,2/q) = 1 for every odd prime q ≤ p, and

3 Lp,2 is not a perfect square.

Finding pseudosquares is motivated by the pseudosquares primality
test.
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Pseudosquares Prime Test
(Lukes, Patterson, Williams 1996)

Let n, s be positive integers. If

All prime divisors of n exceed s,

n/s < Lp,2 for some prime p,

p
(n−1)/2
i ≡ ±1 (mod n) for all primes pi ≤ p, and

2(n−1)/2 ≡ −1 (mod n) when n ≡ 5 (mod 8), or

p
(n−1)/2
i ≡ −1 (mod n) for some prime pi ≤ p when n ≡ 1

(mod 8),

then n is prime or a prime power.

This combines nicely with trial division up to s or, even better,
sieving by primes up to s over an interval.

Jon Sorenson Finding Pseudopowers



Definitions & Background
Computational Results

Distribution of Pseudo-powers
Algorithm Outline

Future Work & Acknowledgements

Pseudocubes

Jon Sorenson Finding Pseudopowers



Definitions & Background
Computational Results

Distribution of Pseudo-powers
Algorithm Outline

Future Work & Acknowledgements

Pseudocubes

For an odd prime p, let Lp,3, the pseudocube for p, be the smallest
positive integer such that

1 Lp,3 ≡ ±1 (mod 9),

2 L
(q−1)/3
p,3 ≡ 1 (mod q) for every prime q ≤ p, q ≡ 1 (mod 3),

3 gcd(Lp,3, q) = 1 for every prime q ≤ p, and

4 Lp,3 is not a perfect cube.

There is a pseudocube primality test
(Berrizbeitia, Müller, Williams 2004).

See also the next talk.
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Computational Results: New Pseudosquares

New Pseudosquares

p Lp,2

367 36553 34429 47705 74600 46489
373 42350 25223 08059 75035 19329
379 > 1025

Previous bound was L367,2 > 120120× 264 ≈ 2.216× 1024 by
Wooding & Williams, 2006.

L367,2 and L373,2 were found in 2008 using 3 months (wall
time) on Butler’s Big Dawg cluster supercomputer.

Extending the computation to 1025 took another 6 months
time, finishing on January 1st 2010.
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Computational Results: New Pseudocubes

New Pseudocubes

p Lp,3

499 601 25695 21674 16551 89317
523,541 1166 14853 91487 02789 15947

547 41391 50561 50994 78852 27899
571,577 1 62485 73199 87995 69143 39717
601,607 2 41913 74719 36148 42758 90677

613 67 44415 80981 24912 90374 06633
619 > 1027

This took 6 months of wall time in 2009.

L499,3 > 1.45152× 1022 was previously found by Wooding &
Williams, 2006.
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Conjectured Growth Rates

Let pi denote the ith prime, and

Let qi denote the ith prime such that qi ≡ 1 (mod 3).

Using reasonable heuristics, it is conjectured that there exist
constants c2, c3 > 0 such that

Lpn,2 ≈ c22
n log pn,

Lqn,3 ≈ c33
n(log qn)

2.

(Lukes, Patterson, Williams 1996)
(Berrizbeitia, Müller, Williams 2004)
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Conjectured Growth Rates

Let us define

c2(n) :=
Lpn,2

2n log pn
,

c3(n) :=
Lqn,3

3n(log qn)2
.

We find that

5 < c2(n) < 162 for n ≤ 74 (averaging around 45), and

0.05 < c3(n) < 6.5 for 10 ≤ n ≤ 53 (averaging around 1.22).

Note that
Lpn,2 = Lpn+1,2 = · · · = Lpn+k ,2

for k ≥ 1 can occur. (See proceedings page 334.)

Jon Sorenson Finding Pseudopowers



Definitions & Background
Computational Results

Distribution of Pseudo-powers
Algorithm Outline

Future Work & Acknowledgements

Doubly-Focused Enumeration
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Algorithm Outline

Doubly-Focused Enumeration

Parallelized by target interval

Space-saving Wheel Datastructure

We’ll focus on pseudosquares for the remainder of the talk.
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Doubly-Focused Enumeration
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Doubly-Focused Enumeration (Bernstein 2004)

Every integer x , with 0 ≤ x ≤ H, can be written in the form

x = tpMn − tnMp

where

gcd(Mp,Mn) = 1,

0 ≤ tp ≤
H + MnMp

Mn
,

and 0 ≤ tn < Mn.
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Doubly-Focused Enumeration

We used

Mp = 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 53 · 89

= 2057 04617 33829 17717 and

Mn = 8 · 3 · 5 · 47 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 97

= 4483 25952 77215 26840.
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Parallelization

We parallelized over tp intervals:

Each processor was assigned an interval [a, b],

Find all tp values, a ≤ tp ≤ b and sort them.

Compute a range of tn values to correspond.

Generate the tn values (out of order).

Compute an x value (implicitly at first) using binary search on
the tp list, and sieve/test it.
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Wheel Datastructure
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Wheel Datastructure Example

We will generate squares modulo 24 · 5 · 7 = 840.
Note that all must be 1 mod 24.

Table for 5 (modulus 24 ≡ 4 mod 5)

0 1 2 3 4

square 0 1 0 0 1
jump 24 48 24 48 72

Table for 7 (modulus 120 = 24 · 5 ≡ 1 mod 7)

0 1 2 3 4 5 6

square 0 1 1 0 1 0 0
jump 120 120 240 120 480 360 240
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Example continued

Generating Squares

24 5 7

1 1 1 121 361 (841)
49 169 289 529 (1009)

(121)

We get the list
1, 121, 361, 169, 289, 529

of squares modulo 24 · 5 · 7 = 840.
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Future Work

GPUs!!
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Thank You

For your attention

To the organizers

To the Holcomb Awards Committee for $$

To Frank Levinson for the supercomputer
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