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Overview of the 

Learning With Errors Problem



• A secret vector s in �17
4

• We are given an arbitrary number of equations, each 

correct up to ±1

Learning With Errors (LWE) ProblemLearning With Errors (LWE) Problem

correct up to ±1

• Can you find s?



LWE’s Claim to FameLWE’s Claim to Fame

� Known to be as hard as worst-case lattice 

problems, which are believed to be problems, which are believed to be 

exponentially hard (even against quantum 

computers)

� Extremely versatile

� Basis for provably secure � Basis for provably secure 

and efficient cryptographic 

constructions



Applications of LWE
� Public Key Encryption [R05, KawachiTanakaXagawa07, 

PeikertVaikuntanathanWaters08]

� CCA-Secure PKE [PeikertWaters08, Peikert09]

� Identity-Based Encryption [GentryPeikertVaikuntanathan08]

� Oblivious Transfer [PeikertVaikuntanathanWaters08]

� Circular-Secure Encryption [ApplebaumCashPeikertSahai09]

� Leakage Resilient Encryption [AkaviaGoldwasserVaikunathan09, 

DodisGoldwasserKalaiPeikertVaikuntanathan10, 
GoldwasserKalaiPeikertVaikuntanathan10]

� Hierarchical Identity-Based Encryption [CashHofheinzKiltzPeikert09, 

AgrawalBonehBoyen09]

� Learning Theory [KlivansSherstov06]

� And more…



LWE Problem: More Precisely

• There is a secret vector s in �
q
n (we'll use �

17
4 as a running example)

• An oracle (who knows s) generates a random vector a in �
q
n and 

8

• An oracle (who knows s) generates a random vector a in �
q

and 

“small” noise element e in �

• The oracle outputs (a, b=a·s+e mod 17)

• This procedure is repeated with the same s and fresh a and e

• Our task is to find s
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• Once there are enough a
i
, the s is uniquely determined
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•Thm [R'05] : There is a polynomial-time quantum 

reduction from solving lattice problems in the worst case to 

solving LWE

Hardness of LWE

solving LWE
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Decision LWE Problem 

World 1:

s fixed in �
q
n

a
i
uniform in �

q
n

e
i
random normale

i
random normal

(a
1
, b

1 
= a

1
·s+e

1
)

(a
2
, b

2
= a

2
·s+e

2
)

…

(a
k
, b

k
= a

k
·s+e

k
)

World 2:

a
i
,b

i
uniform in �

q
n×�

q

Decision LWE 

Oracle
I am in World 1 (or 2)

i i q q

(a
1
,b

1
)

(a
2
,b

2
)

…

(a
k
,b

k
)



What We Want to ConstructWhat We Want to Construct
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Search LWE < Decision LWESearch LWE < Decision LWE

• Idea: Use the Decision oracle to figure out the coordinates of s one 

at a time
1. If g is right, then we are 

• Let g∈�
q
be our guess for the first 

coordinate of s

• Repeat the following:

• Receive LWE pair (a,b)

sending a distribution from 

World 1

2. If g is wrong, then we are 

sending a distribution from 

World 2 (here we use that q 

is prime)8

3

37132 1· + = 13

• Pick random r in �
q

• Send (a+(r,0,…,0), b+rg) to the decision oracle:

13+rg37132+r

• We will find the right g after 

at most q attempts

• Use the same idea to recover 

all coefficients of s one at a 

time
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Some Inefficiencies of 

LWE-Based Schemes

s
r r + z

A
s

+ e = b A b

public key is O(n2) encryption of 1 bit requires O(n2) (or 

O(n)) operations



Source of Inefficiency
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37132 1· 13 • Getting just one extra random-

looking number requires n 

+ =
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5

random numbers!

• Wishful thinking: get n random numbers and produce 

O(n) pseudo-random numbers in “one shot”
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Main Question
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• How do we define multiplication so that the resulting distribution is 

pseudorandom? (Coordinate-wise multiplication is not secure)

• Answer: Define it as multiplication in a polynomial ring

• Similar ideas used in the heuristic design of NTRU [HPS98], and 

in compact one-way functions [Mic02,PR06,LM06,…].



Our Results
0. We define a compact version of LWE called Ring-LWE

1. We show that Ring-LWE is as hard as (quantumly) solving 

lattice problems on ideal lattices in the worst caselattice problems on ideal lattices in the worst case

• A qualitatively weaker result was independently shown by Stehlé, 

Steinfeld, Tanaka, and Xagawa [SSTX’09] using different 

techniques of independent interest.

2. We show that decision Ring-LWE is as hard as (search) Ring-

LWELWE

• Non-trivial

• Works with any cyclotomic ring

3. We demonstrate some basic cryptographic applications



Learning With Errors over Rings



The Search Ring-LWE Problem
•Let R be the ring �q[x]/〈xn+1〉 for n a power of 2 and q a 

prime satisfying q=1 (mod 2n).

•E.g., q=17, n=4, �17[x]/〈x4+1〉 a s e b•E.g., q=17, n=4, �17[x]/〈x +1〉

•The secret s is now an element in R

•The elements a are chosen uniformly 

from R

•The coefficients of the noise 

polynomial e are chosen as small independent normal vars
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Our First Result: 

Hardness of Search Ring-LWE
• We show that the search ring-LWE problem is as hard as 

quantumly solving worst-case lattice problems on ideal quantumly solving worst-case lattice problems on ideal 

lattices

• For our ring, these are lattices satisfying that if (x1,…,xn)∈∈∈∈L then 

also (x2,…,xn,-x1)∈∈∈∈L

• The result applies to rather general rings

• The proof is by adapting the proof of [R05] to rings

• The quantum part remains the same; only the classical part needs 

to be adapted 



Our First Result: 

Hardness of Search Ring-LWE

• One technical issue is that the coefficients of the • One technical issue is that the coefficients of the 

error polynomial e are not i.i.d. normal, but rather 

distributed according to a (non-spherical) Gaussian

• Luckily this does not cause any serious problems, and we 

ignore it in this talk

• It is possible to get hardness for the i.i.d. normal case if 

we restrict the number of ring-LWE samples  (as in 

[SSTX’09] or as a corollary to our main result)



Our Second Result: 

Reducing 

Search Ring-LWE 

to to 

Decision Ring-LWE



Decision Ring-LWE Problem 
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What We Want to Construct
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Why Does the Search-to-Decision 
Reduction for LWE not Work?

• Recall the reduction for LWE:

• Let g be our guess for the first coordinate of s (only 17 possibilities).

8
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12

5

37132 1· + =

• Repeat the following:

• Receive LWE pair (a,b):

• Pick random r in Z
17

• Send sample below to the Decision Oracle:

13

a b

13+rg

• Then:

1. If g is correct, we have legal LWE samples; 

2. If g is incorrect, we have uniform samples

37132+r



Why Does the Search-to-Decision 
Reduction for LWE not Work?

• Now consider what happens in ring-LWE:
a s e b

• Repeat the following:

• Receive LWE pair (a,b):

• Pick random r in Z
17

• Send sample to the Decision Oracle:
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• How do we satisfy (1), namely, output legal ring-LWE samples? It 

seems we have to guess all of s !
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The Ring �q[x]/〈xn+1〉
• Let t∈�q be such that tn=-1 (i.e., a root of xn+1).

• Then, for any p1,p2∈�q[x]/〈xn+1〉, p1(t)·p2(t)=(p1·p2)(t), and 

obviously p (t)+p (t)=(p +p )(t), hence the function mapping obviously p1(t)+p2(t)=(p1+p2)(t), hence the function mapping 

p to p(t) is a ring homomorphism

• By our assumption that q=1 (mod 2n), the polynomial xn+1 

has n roots in the field �q,

t1=g(q-1)/2n, t3=g3(q-1)/2n, …, t2n-1=g(2n-1)(q-1)/2nt1=g(q-1)/2n, t3=g3(q-1)/2n, …, t2n-1=g(2n-1)(q-1)/2n

• Hence the mapping ϕ:R→�q
n that maps each p∈R to 

p̂=(p(t1),…,p(t2n-1))∈�q
n

is a ring isomorphism, with both 

addition and multiplication in �q
n
being coordinate-wise



The Search Ring-LWE Problem
• So we can equivalently think of ring-LWE as follows:

• The secret is an element s ̂ in �q
n

• The elements â are chosen uniformly â s ̂ ê b̂

̂

• The elements â are chosen uniformly 

from �q
n

• Multiplication is coordinate-wise

• The coordinates of the noise 

vector ê are chosen from some

‘strange’ distribution
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Search-to-Decision Reduction for 
Ring-LWE (better attempt)

• Let g be our guess for the first coordinate of s ̂ (only 17 possibilities).

̂ ̂

â s ̂ ê b̂
̂

• Repeat the following:

• Receive LWE pair (a ̂,b)̂:

• Pick random r in Z
17

• Send sample to the Decision Oracle:
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13• Send sample to the Decision Oracle:

• Then:

1. If g is correct, we have legal ring-LWE samples! ☺

2. BUT if g is incorrect, we don’t have uniform samples �
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A Hybrid Argument

, b ̂1( )
Decision

Ring-LWE

Oracle

“I am in World 1”b ̂2 b ̂3 b ̂4a ̂1 a ̂2 a ̂3 a ̂4

( )

Correct g

, �( )
Decision
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Oracle

“I am in World 1”b ̂2 b ̂3 b ̂4a ̂1 a ̂2 a ̂3 a ̂4

, �( )
Decision
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“I am in World 1”� b ̂3 b ̂4a ̂1 a2̂ a ̂3 a4̂

, �( )
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“I am in World 2”� � b ̂4a ̂1 a ̂2 a ̂3 a ̂4

( )

Wrong g

, �( )
Decision

Ring-LWE

Oracle

“I am in World 2”� � �a ̂1 a ̂2 a ̂3 a ̂4

• To summarize, using the decision oracle, we are able to find s ̂i for 

one fixed i

• But how can we recover all of s ̂?



Recovering All of s
• Idea: permute the coordinates of (the unknown) s ̂ by permuting a ̂

and b ̂

• Repeat the following:

̂ ̂

82 9

â s ̂ ê b̂

8

̂

• Repeat the following:

• Receive ring-LWE pair (a ̂,b)̂:

• Output the pair (π(a)̂, π(b)̂= π(a ̂)××××π(s)̂+π(ê)):
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• If the output pairs were legal ring-LWE samples with secret π(s ̂), 

we would be done

• But why would π(ê) be distributed correctly??
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Recovering All of s
• It turns out that there are n special permutations π1,…,πn that have the 

remarkable property that they preserve the error distribution!

• For instance, assume q=17 and n=4. 

• In this case, the mapping ϕ maps each polynomial 

̂

• In this case, the mapping ϕ maps each polynomial 

p(x)∈�17[x]/〈x4+1〉 to p ̂=(p(2),p(23),p(25),p(27)) ∈�17
4

• Now assume we permute this to (p(23),p(2),p(27),p(25))

• I.e., π switches locations 1 and 2, and 3 and 4.

• This is equal to p ̂’ where p’(x)=p(x3)

• Hence, if p(x)=c0+c1x+c2x
2+c3x

3 then p’(x)= c0+c3x-c2x
2+c1x

3

̂

• 0 1 2 3 0 3 2 1

• We see that the permutation simply permutes the coefficients of the 

polynomial and possibly negates their sign.

• In particular, it preserves the error distribution!

• We can similarly take the permutations corresponding to p’(x)=p(x5), 

p’(x)=p(x7),  and the identity permutation



Summary of Reduction

• By using a hybrid argument on the decision oracle, we are able to 

recover one fixed coordinate of s ̂

• Repeating this procedure with all n permutations allows us to recover 

̂

̂

all of s,̂ and hence also s, as required

• Actually, one also need several delicate amplification steps and 

random self reductions… details in the paper!

• The reduction might seem mysterious and ad-hoc…

• In fact, we are relying here on properties of the cyclotomic• In fact, we are relying here on properties of the cyclotomic

number field  �(ζ2n), its n Galois automorphisms, its canonical 

embedding, and the factorization of the ideal 〈q〉

• Viewed this way, the reduction is easy to extend to all cyclotomic

polynomials (and not just xn+1)



Final Summary
� Search Ring-LWE is as hard as (quantumly) solving 

lattice problems on ideal lattices in the worst case

� Decision Ring-LWE (in cyclotomic rings) is as hard as 

Search Ring-LWE

� Ring-LWE allows for much more efficient cryptographic 

constructions than regular LWE

� Open questions: 

Attack ring-LWE� Attack ring-LWE

� ‘Upgrade’ existing crypto constructions to ring-LWE

� Theoretically sound fully-homomorphic encryption scheme 

based on ring-LWE?

� Factor numbers given an algorithm for lattice problems


