|' Learning With Errors Over Rings'

VVadim Lyubashevsky
Chris Peikert
Oded Regev

Appeared in Eurocrypt 2010; see also talk and survey prepared for CCC'2010

*—




Overview of the
Learning With Errors Problem




Learning With Errors (LWE) Problem

* A secret vectorsinZ

* We are given an arbitrary number of equations, each
correct up to *1
e Can you find s?

1451+ 155,+ 5534+ 25,8 (mod1l7)
1351+ 14s5,+ 1453+ 6Ss=16(mod 17)
651 +10s,+ 1353+ 1s4=3 (mod1l7)
10514+ 4s,+ 12534+ 16s4~12(mod 17)
951 555 053 6549 (mod1l7)
351+ 6S>+ 4s3+ bspx>~16(mod 17)
6s1+ 75241653+ 25423 (mod1l7)




LWE’s Claim to Fame

v Known to be as hard as worst-case lattice
problems, which are believed to be
exponentially hard (even against quantum
computers)

v’ Extremely versatile

v Basis for provably secure
and efficient cryptographic
constructions
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Applications of LWE

Public Key Encryption [RO5, KawachiTanakaXagawa07,
PeikertVaikuntanathanWaters08] ,

CCA-Secure PKE [PeikertWaters08, Peikert09]
Ildentity-Based Encryption [ GentryPeikertVaikuntanathano0s]
Oblivious Transfer [PeikertVaikuntanathanWaterso8]
Circular-Secure Encryption [ ApplebaumCashPeikertSahaio9g]

Leakage Resilient Encryption [AkaviaGoldwasserVaikunathano9,
DodisGoldwasserKalaiPeikertVaikuntanathan10,
GoldwasserKalaiPeikertVaikuntanathaniO]

Hierarchical Identity-Based Encryption [CashHofheinzKiltzPeikert09,
AgrawalBonehBoyen09]

Learning Theory [KlivansSherstov06]

And more...




LWE Problem: More Precisely

e There is a secret vector s in Zq“ (we'll use Z % as a running example)
e An oracle (who knows s) generates a random vector a in Z g and

“small” noise element e in Z
* The oracle outputs (a, b=a-s+e mod 17)
* This procedure is repeated with the same s and fresh a and e
e Our task is to find s
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* Once there are enough a., the s is uniquely determined
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Hardness of LWE

eThm [R'O5] : There is a polynomial-time quantum
reduction from solving lattice problems in the worst case to
solving LWE




Decision LWE Problem

World 1:

s fixed in Zq

a, uniform in Zy

e, random normal
(a, b, =a ste)
(a,, b,=a,ste)

(a,, b, = a,ste) Decision LWE
Oracle

| am in World 1 (or 2)



What We Want to Construct

s fixed in Zg
a. uniform in Zg

e random normal
(01' b1 = G1S+e1) Search

, b= a_st
(a,, b=azs+e) LWE l

(o, b, =azste) Solver

| am in World 1 (or 2)

Decision
LWE
Oracle




Search LWE < Decision LWE

» |dea: Use the Decision oracle to figure out the coordinates of s one
at a time

1. If g is right, then we are
sending a distribution from
World 1

2. If g is wrong, then we are

e Let gezZ, be our guess for the first

coordinate of s

* Repeat the following:
e Receive LWE pair (a,b)

[2]s]7]s]:
\ J
Y

sending a distribution from
World 2 (here we use that g

+ m = E is prime)

S
b

* We will find the right g after
at most g attempts

a

[ ]e]=]

* Pickrandomrin Z q

e Use the same idea to recove
e Send (a+(r,0....,0), b+rg) to the decision oracle: ' recover
all coefficients of s one at a

‘2+r‘ 13 ‘ 7 ‘ 3 ‘ 13+rg time




e e e —

Some Inefficiencies of

LWE-Based Schemes
| L ) | L 1M+ (2]
]
A + le] = o A

public key is O(n?)

encryption of 1 bit requires O(n?) (or
O(n)) operations



Source of Inefficiency

‘2‘13‘7‘3

* EI = EI e Getting just one extra random-

looking number requires n
random numbers!

o Wishful thinking: get n random numbers and produce

O(n) pseudo-random numbers in “one shot”

1




Main Question
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* How do we define multiplication so that the resulting distribution is
pseudorandom? (Coordinate-wise multiplication is not secure)

* Answer: Define it as multiplication in a polynomial ring
e Similar ideas used in the heuristic design of NTRU [HPS98], and
in compact one-way functions [Mic02,PR06,LM06,...].



Our Results

0. We define a compact version of LWE called Ring-LWE

1. We show that Ring-LWE is as hard as (quantumly) solving
lattice problems on ideal lattices in the worst case

e A qualitatively weaker result was independently shown by Stehlé,
Steinfeld, Tanaka, and Xagawa [SSTX'09] using different
techniques of independent interest.

2. We show that decision Ring-LWE is as hard as (search) Ring-
LWE

e Non-trivial

e  Works with any cyclotomic ring

3. We demonstrate some basic cryptographic applications
\\ - —




Learning With Errors over Rings
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The Search Ring-LWE Problem

*Let R be the ring Z [x]/(x"+1) for n a power of 2 and q a
prime satisfying q=1 (mod 2n).
*E.g., q=17, n=4, Z ,[x]/{x*+1)
* The secret s is now an element in R

* The elements a are chosen uniformly
from R

L
||

*

* The coefficients of the noise
polynomial e are chosen as small independent normal vars

(a, b= a;s+e) Search

>| Ring-LWE
(o, b, =aste) Solver

(a,, b= aste)




e e e —

Our First Result:
Hardness of Search Ring-LWE

e« We show that the search ring-LWE problem is as hard as
quantumly solving worst-case lattice problems on idea/
lattices

* For our ring, these are lattices satisfying that if (x,,....x ) eL then
also (x,,....x.,~X,) €L

* The result applies to rather general rings
e The proof is by adapting the proof of [RO5] to rings

e The quantum part remains the same; only the classical part needs
to be adapted
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Our First Result:
Hardness of Search Ring-LWE

* One technical issue is that the coefficients of the
error polynomial e are not i.i.d. normal, but rather
distributed according to a (non-spherical) Gaussian

e Luckily this does not cause any serious problems, and we
ignore it in this talk

o |tis possible to get hardness for the i.i.d. normal case if
we restrict the number of ring-LWE samples (as in
[SSTX'09] or as a corollary to our main result)



Our Second Result:
Reducing
Search Ring-LWE
to
Decision Ring-LWE




Decision Ring-LWE Problem

World 1:

s fixed in R

a. uniform in R

e, random and “small”
(a, b,= as+e)

(a,, b,=azs+e)

(a,, b, =a,st+e)

Decision Ring-LWE
Oracle

—p | am in World 1 (or 2)
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What We Want to Construct

sin R

a. uniform in R

e random and “small”
(a, b, =ast+e)

Search

(a,, b= aste)

(a,, b,=a,ste,) Solver

| am in World 1 (or 2)

Decision
Ring-LWE
Oracle
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Why Does the Search-to-Decision
Reduction for LWE not Work?

* Recall the reduction for LWE:
e Let g be our guess for the first coordinate of s (only 17 possibilities).

‘-
N

* Repeat the following:
* Receive LWE pair (a,b): ‘ 2 ‘13 ‘ 7 ‘ 3
- Y

J

a

* PickrandomrinZ_
* Send sample below to the Decision Oracle:

ann

2+r

e Then:
1. If gis correct, we have legal LWE samples;
2. If gis incorrect, we have uniform samples
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Why Does the Search-to-Decision
Reduction for LWE not Work?

 Now consider what happens in ring-LWE:

a S e
 Repeat the following: I I N .
* Receive LWE pair (a,b): |83 | |3 L
7 12 2
* PickrandomrinZ_ A B D .

e Send sample to the Decision Oracle: il

‘0‘0‘\)‘0“—‘m‘3\“m‘0‘

 How do we satisfy (1), namely, output legal ring-LWE samples? It
seems we have to guess all of s !
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The Ring Z [x]/{x"+1)
Let teZ, be such that t"=-1 (i.e., a root of x"+).
Then, for any p,p,eZ[x]1/{(x"H), p,(t)"p,(t)=(p,p,)(t), and

obviously p,(t)+p,(t)=(p,+p,)(t), hence the function mapping
p to p(t) is a ring homomorphism

By our assumption that g=1 (mod 2n), the polynomial x"+1
has n roots in the field Z,

t1=g(q-1)/2n’ t3=g3(q-1)/2n’ v, tzn_1=g(2n-1)(q-1)/2n

Hence the mapping ¢:R—Z_ that maps each peR to
B=(p(t,),....0(t,,.)) €Z is a ring isomorphism, with both

addition and multiplication in Z_being coordinate-wise
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The Search Ring-LWE Problem

* So we can equivalently think of ring-LWE as follows:

e The secret is an element $ in Zg

* The elements d are chosen uniformly 4

n
from Z q

* Multiplication is coordinate-wise
* The coordinates of the noise
vector é are chosen from some

‘strange’ distribution

(G, b, = d,x5+&)
(d,, B = d_x5+é)

(G, b, =d, x5+¢)

Search

Ring-LWE
Solver
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Search-to-Decision Reduction for
Ring-LWE (better attempt)

* Let g be our guess for the first coordinate of § (only 17 pgssibilitieBs).

qa S e
* Repeat the following: B = L9
e Receive LWE pair (4,b): 2] y B [ LT e L
7 12 9 8
3 5 3 1
* PickrandomrinZ_ 2r|  |strg
* Send sample to the Decision Oracle: sl el
7 8
3 1

e Then:
1. If g is correct, we have legal ring-LWE samples! ©
2. BUT if g is incorrect, we don’t have uniform samples ®



A Hybrid Argument

Decision
Correct g ( d|d,|d;|d, B, |5, |6;|B, ) ——p [Ring-LWE| = “| am in World 1”
’ Oracle
Decision
Wrong g d, 146,]46;]4, *|B,]|5,|8, ———p [Ring-LWE| = “| am in World 1”
’ Oracle
Decision
d, dz 63 d4 * * 53 54 —)  IRING-LWE] —— “l am in World 1”
4 Oracle
Decision
d, dz 63 d4 * * * 54 —)  IRING-LWE] —— “l am in World 2"
’ Oracle

Decision
( 6 lalalal [H[x[x]x ) —— |RingLWE] ——— “l am in World 2"

Oracle

e To summarize, using the decision oracle, we are able to find s, for
one fixed'i
e But how can we recover all of §?
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Recovering All of s

* |dea: permute the coordinates of (the unknown) s by permuting d
and b

d S é b
2] [s] [o] [s
* Repeat the following: —1 5 e o
 Receive ring-LWE pair (d,B): —1 51 Bl c
s [s] [s] [+
13 16
« Output the pair (2(8), 1®)= t(@xn@+r@): [2]| [s]
BB
7| [s
* If the output pairs were legal ring-LWE samples with secret 7t(5),

we would be done
. But why would 1t(é) be distributed correctly??
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Recovering All of s

e [t turns out that there are n special permutations r,,...,r, that have the
remarkable property that they preserve the error distribution!
e For instance, assume g=17 and n=4.
* In this case, the mapping ¢ maps each polynomial

P() € Z,,[X1/(x441) to B=(p(2),p(22).p(25).p(2)) ez
* Now assume we permute this to (p(23),p(2).p(27).p(2°))
* |.e., ™ switches locations 1 and 2, and 3 and 4.
* This is equal to p’ where p’(X)=p(x3)
e Hence, if p(x)=c,+cx+c,x*+c;x3 then p’(x)= ¢ +cx-c, x+¢ x>
 We see that the permutation simply permutes the coefficients of the
polynomial and possibly negates their sign.
 In particular, it preserves the error distribution!
 We can similarly take the permutations corresponding to p’(x)=p(x>),
p’'(x)=p(x’), and the identity permutation
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Summary of Reduction

e By using a hybrid argument on the decision oracle, we are able to
recover one fixed coordinate of §
e Repeating this procedure with all n permutations allows us to recover
all of s, and hence also s, as required
* Actually, one also need several delicate amplification steps and
random self reductions... details in the paper!

e The reduction might seem mysterious and ad-hoc...

* |n fact, we are relying here on properties of the cyclotomic
number field Q(C,,), its n Galois automorphisms, its canonicall
embedding, and the factorization of the ideal (q)

e Viewed this way, the reduction is easy to extend to all cyclotomic

polynomials (and not just x"+1)
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Final Summary

Search Ring-LWE is as hard as (quantumly) solving
lattice problems on ideal lattices in the worst case

Decision Ring-LWE (in cyclotomic rings) is as hard as
Search Ring-LWE

Ring-LWE allows for much more efficient cryptographic
constructions than regular LWE

Open questions:

Attack ring-LWE
‘Upgrade’ existing crypto constructions to ring-LWE

Theoretically sound fully-homomorphic encryption scheme
based on ring-LWE?

Factor numbers given an algorithm for lattice problems
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