

A Randomized Sublinear Time Parallel GCD Algorithm for the EREW PRAM[∗]

Jonathan P. Sorenson Computer Science and Software Engineering, Butler University Indianapolis, IN 46208 USA sorenson@butler.edu, http://www.butler.edu/∼sorenson http://digitalcommons.butler.edu/facsch papers/81/ (for paper download in PDF)

Overview

The Greatest Common Divisor of two integers x, y is the largest integer d such that $d \mid x$ and $d \mid y$. Most GCD algorithms are based, more or less, on Euclid's algorithm. Throughout, let $n := \log_2 x$, $m := \log_2 y$, with $n \geq m$.

Previous Work: Sequential Complexity

 $O(nm)$ Euclid, about 300 BCE $O(nm/\log n)$ Lehmer [9] (Jebelean [6], Sorenson [14]) $O(n(\log n)^2)$ Knuth-Schönhage [11] Stehlé and Zimmerman [17] $O(n^2)$) Binary algorithm (Stein[18], Knuth[8], Brent[3], Vallée[19] $&$ others) $O(n^2/\log n)$ Jebelean [5], Weber [20], Sorenson $[13, 15]$

- EREW PRAM: no concurrency of memory access allowed.
- CREW PRAM: concurrent reads allowed, but not writes.
- CRCW PRAM: concurrent reads and writes permitted.

The parallel complexity of the integer GCD problem is open. No \mathcal{NC} algorithm is known, nor has it been shown to be P -complete.

Euclid D. H. Lehmer

Definitions and Background

Parallel Random Access Machine – Potentially infinite number of processors, potentially infinite shared memory with random access. Programs execute in lockstep.

Previous Work: Parallel Complexity

CRCW PRAM Results
 $O(n \log \log n / \log n)$

Kannan, Miller, Rudolph [7] $O(n/\log n)$ Chor and Goldreich [4] (Sorenson [13], Sedjelmaci [12])) Adleman and Kompella [1] √ $\exp[O(\sqrt{n \log n})]$ processors

- $(1 1/B)^{2B \log n} = O(1/n^2)$.
- One loop iteration takes $O(\log n)$ time division by y is the bottleneck (Beame, Cooke, Hoover [2]).
- Total number of iterations is O $\int n \log \log B$ $(\log B)^2$ \setminus .

CREW PRAM Results

randomized

 $O(n \log \log n / \log n)$ time by adapting [4] or [13]

EREW PRAM Results

 $O(n)$ running time - Purdy's algorithm [10]

New Result

 $O((\log n)^2)$

EREW PRAM: Compute $gcd(x, y)$ with probability $1 - o(1)$ in $O(n \log \log n / \log n)$ time using $n^{6+\epsilon}$ processors. [16]

Reduction

Our inputs are integers x, y with $x \ge y > 0$.

- Choose a prime bound $B > 0$, and assume $p \mid x$ or $p \mid y$ implies $p > B$.
- Choose a at random, $1 \le a \le y 1$.
- Compute $r := ax \bmod y$.
- Remove all prime divisors $\leq B$ from r producing s. Thus $P(r/s) \leq B$. We use $(x, y) \rightarrow (y, s)$ for our reduction. We claim:
- $gcd(x, y) = gcd(y, s)$ with probability $1 o(1)$. (This fails only if $gcd(a, y) > 1$, or $gcd(a, y) > B$, which is unlikely.)
- with probability at least $1/B$, we have

$$
\log s \quad < \quad \log r - \frac{(\log B)^2}{2 \log \log B}
$$

.

Algorithm Outline

Preprocessing

This takes $o(n)$ time in parallel:

- Choose $B := n^2$ (larger is ok)
- Remove and save common divisors of x, y that are $\leq B$.

Main Loop

While $xy \neq 0$ do the following:

- Perform $2B \log n$ reductions in parallel
- \bullet Save the smallest s value found
- $x := y$; $y := s$;

Notes:

Postprocessing

This takes $o(n)$ time in parallel:

- Restore saved common divisors $\leq B$, and combine those with $x + y$ to compute the answer.
- Verify the answer divides the original values of x, y . If not, report failure.

Technical Theorem

Define

$$
W(x) := \frac{c \cdot (\log B(x))^2}{\log \log B(x)}, \quad c > 0,
$$

$$
F(x) := \# \{ n \le x : n = my, \ P(m) \le B(x), \ \log m \ge W(x) \}.
$$

References

- [1] L. M. Adleman and K. Kompella. Using smoothness to achieve parallelism. In *20th Annual ACM Symposium on Theory of Computing*, pages 528–538, 1988.
- [2] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems. *SIAM Journal on Computing*, 15:994–1003, 1986.
- [3] R. P. Brent. Analysis of the binary Euclidean algorithm. In J. F. Traub, editor, *Algorithms and Complexity*, pages 321–355. Academic Press, 1976.
- [4] B. Chor and O. Goldreich. An improved parallel algorithm for integer GCD. *Algorithmica*, 5:1–10, 1990.
- [5] Tudor Jebelean. A generalization of the binary GCD algorithm. In M. Bronstein, editor, *1993 ACM International Symposium on Symbolic and Algebraic Computation*, pages 111–116, Kiev, Ukraine, 1993. ACM Press.
- [6] Tudor Jebelean. A double-digit Lehmer-Euclid algorithm for finding the GCD of long integers. *J. Symbolic Comput.*, 19(1-3):145–157, 1995. MR 96h:11128.

That is, $F(x)$ counts integers $n \leq x$ where n has a $B(x)$ -smooth divisor that $i s \geq \exp W(x)$.

Theorem. Let $\epsilon > 0$. For sufficiently large x we have

 $F(x) \geq x \cdot B(x)^{-c(1+\epsilon)}.$

Proof: Exercise for the reader. \mathbb{R}^n

- [7] R. Kannan, G. Miller, and L. Rudolph. Sublinear parallel algorithm for computing the greatest common divisor of two integers. *SIAM Journal on Computing*, 16(1):7–16, 1987.
- [8] D. E. Knuth. *The Art of Computer Programming: Seminumerical Algorithms*, volume 2. Addison-Wesley, Reading, Mass., 3rd edition, 1998.
- [9] D. H. Lehmer. Euclid's algorithm for large numbers. *American Mathematical Monthly*, 45:227– 233, 1938.
- [10] G. B. Purdy. A carry-free algorithm for finding the greatest common divisor of two integers. *Computers & Mathematics with Applications*, 9(2):311–316, 1983.
- [11] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139– 144, 1971.
- [12] Sidi Mohamed Sedjelmaci. A parallel extended gcd algorithm. *J. Discrete Algorithms*, 6(3):526– 538, 2008.
- [13] Jonathan P. Sorenson. Two fast GCD algorithms. *Journal of Algorithms*, 16:110–144, 1994.
- [14] Jonathan P. Sorenson. An analysis of Lehmer's Euclidean GCD algorithm. In A. H. M. Levelt, editor, *1995 ACM International Symposium on Symbolic and Algebraic Computation*, pages 254–258, Montreal, Canada, July 1995. ACM Press.

[15] Jonathan P. Sorenson. An analysis of the generalized binary gcd algorithm. In Alf van der Poorten and Andreas Stein, editors, *High Primes and Misdemeanors: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams*, pages 327–340, Banff, Alberta, Canada, 2004.

- [16] Jonathan P. Sorenson. A randomized sublinear time parallel GCD algorithm for the EREW PRAM. *Information Processing Letters*, 110(5):198 – 201, 2010. Preliminary version available from arXiv.org.
- [17] Damien Stehlé and Paul Zimmermann. A binary recursive GCD algorithm. In Duncan Buell, editor, *Sixth International Algorithmic Number Theory Symposium*, pages 411–425, Burlington, Vermont, USA, June 2004. Springer. LNCS 3076.
- [18] J. Stein. Computational problems associated with Racah algebra. *Journal of Computational Physics*, 1:397–405, 1967.
- [19] Brigitte Vallée. The complete analysis of the binary Euclidean algorithm. In *Algorithmic number theory (Portland, OR, 1998)*, volume 1423 of *Lecture Notes in Comput. Sci.*, pages 77–94. Springer, Berlin, 1998. MR 2000k:11143a.
- [20] Kenneth Weber. The accelerated integer GCD algorithm. *ACM Trans. Math. Software*, 21(1):111– 122, 1995. MR 96h:68084.

[∗] Supported in part by a grant from the the Holcomb Awards Committee. Appeared as [16].