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Overview
The Greatest Common Divisor of two integers x, y is the largest integer d
such that d | x and d | y. Most GCD algorithms are based, more or less, on
Euclid’s algorithm. Throughout, let n := log2 x, m := log2 y, with n ≥ m.

Previous Work: Sequential Complexity
O(nm) Euclid, about 300 BCE
O(nm/ log n) Lehmer [9] (Jebelean [6], Sorenson [14] )
O(n(log n)2 log log n) Knuth-Schönhage [11]

Stehlé and Zimmerman [17]
O(n2) Binary algorithm

(Stein[18], Knuth[8], Brent[3], Vallée[19] & others)
O(n2/ log n) Jebelean [5], Weber [20], Sorenson [13, 15]

Euclid D. H. Lehmer

Definitions and Background
Parallel Random Access Machine – Potentially infinite number of proces-
sors, potentially infinite shared memory with random access. Programs exe-
cute in lockstep.

• EREW PRAM: no concurrency of memory access allowed.

•CREW PRAM: concurrent reads allowed, but not writes.

•CRCW PRAM: concurrent reads and writes permitted.

The parallel complexity of the integer GCD problem is open. No NC algo-
rithm is known, nor has it been shown to be P-complete.

Previous Work: Parallel Complexity
CRCW PRAM Results

O(n log log n/ log n) Kannan, Miller, Rudolph [7]
O(n/ log n) Chor and Goldreich [4]

(Sorenson [13], Sedjelmaci [12])
O((log n)2) Adleman and Kompella [1]

randomized exp[O(
√

n log n)] processors

CREW PRAM Results
O(n log log n/ log n) time by adapting [4] or [13]

EREW PRAM Results
O(n) running time - Purdy’s algorithm [10]

New Result
EREW PRAM: Compute gcd(x, y) with probability 1 − o(1) in
O(n log log n/ log n) time using n6+ε processors. [16]

Reduction
Our inputs are integers x, y with x ≥ y > 0.

• Choose a prime bound B > 0, and assume p | x or p | y implies p > B.

• Choose a at random, 1 ≤ a ≤ y − 1.

• Compute r := ax mod y.

• Remove all prime divisors ≤ B from r producing s. Thus P (r/s) ≤ B.

We use (x, y) → (y, s) for our reduction. We claim:

• gcd(x, y) = gcd(y, s) with probability 1− o(1).
(This fails only if gcd(a, y) > 1, or gcd(a, y) > B, which is unlikely.)

•with probability at least 1/B, we have

log s < log r − (log B)2

2 log log B
.

Algorithm Outline
Preprocessing

This takes o(n) time in parallel:

• Choose B := n2 (larger is ok)
• Remove and save common divisors of x, y that are ≤ B.

Main Loop
While xy 6= 0 do the following:

• Perform 2B log n reductions in parallel
• Save the smallest s value found
• x := y; y := s;

Notes:
• (1− 1/B)2B log n = O(1/n2).
•One loop iteration takes O(log n) time – division by y is the bottleneck

(Beame, Cooke, Hoover [2]).

• Total number of iterations is O

(
n log log B

(log B)2

)
.

Postprocessing
This takes o(n) time in parallel:

• Restore saved common divisors ≤ B, and combine those with x + y to
compute the answer.

•Verify the answer divides the original values of x, y. If not, report failure.

Technical Theorem
Define

W (x) :=
c · (log B(x))2

log log B(x)
, c > 0,

F (x) := #{n ≤ x : n = my, P (m) ≤ B(x), log m ≥ W (x)}.

That is, F (x) counts integers n ≤ x where n has a B(x)-smooth divisor that
is ≥ exp W (x).

Theorem. Let ε > 0. For sufficiently large x we have

F (x) ≥ x ·B(x)−c(1+ε).

Proof: Exercise for the reader.
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