
A Randomized Sublinear Time Parallel GCD Algorithm
for the EREW PRAM∗

Jonathan P. Sorenson
Computer Science and Software Engineering, Butler University

Indianapolis, IN 46208 USA
sorenson@butler.edu, http://www.butler.edu/∼sorenson

http://digitalcommons.butler.edu/facsch papers/81/ (for paper download in PDF)

Overview
The Greatest Common Divisor of two integers x, y is the largest integer d
such that d | x and d | y. Most GCD algorithms are based, more or less, on
Euclid’s algorithm. Throughout, let n := log2 x, m := log2 y, with n ≥ m.

Previous Work: Sequential Complexity
O(nm) Euclid, about 300 BCE
O(nm/ log n) Lehmer [9] (Jebelean [6], Sorenson [14])
O(n(log n)2 log log n) Knuth-Schönhage [11]

Stehlé and Zimmerman [17]
O(n2) Binary algorithm

(Stein[18], Knuth[8], Brent[3], Vallée[19] & others)
O(n2/ log n) Jebelean [5], Weber [20], Sorenson [13, 15]

Euclid D. H. Lehmer

Definitions and Background
Parallel Random Access Machine – Potentially infinite number of proces-
sors, potentially infinite shared memory with random access. Programs exe-
cute in lockstep.

• EREW PRAM: no concurrency of memory access allowed.

•CREW PRAM: concurrent reads allowed, but not writes.

•CRCW PRAM: concurrent reads and writes permitted.

The parallel complexity of the integer GCD problem is open. No NC algo-
rithm is known, nor has it been shown to be P-complete.

Previous Work: Parallel Complexity
CRCW PRAM Results

O(n log log n/ log n) Kannan, Miller, Rudolph [7]
O(n/ log n) Chor and Goldreich [4]

(Sorenson [13], Sedjelmaci [12])
O((log n)2) Adleman and Kompella [1]

randomized exp[O(
√

n log n)] processors

CREW PRAM Results
O(n log log n/ log n) time by adapting [4] or [13]

EREW PRAM Results
O(n) running time - Purdy’s algorithm [10]

New Result
EREW PRAM: Compute gcd(x, y) with probability 1 − o(1) in
O(n log log n/ log n) time using n6+ε processors. [16]

Reduction
Our inputs are integers x, y with x ≥ y > 0.

• Choose a prime bound B > 0, and assume p | x or p | y implies p > B.

• Choose a at random, 1 ≤ a ≤ y − 1.

• Compute r := ax mod y.

• Remove all prime divisors ≤ B from r producing s. Thus P (r/s) ≤ B.

We use (x, y) → (y, s) for our reduction. We claim:

• gcd(x, y) = gcd(y, s) with probability 1− o(1).
(This fails only if gcd(a, y) > 1, or gcd(a, y) > B, which is unlikely.)

•with probability at least 1/B, we have

log s < log r − (log B)2

2 log log B
.

Algorithm Outline
Preprocessing

This takes o(n) time in parallel:

• Choose B := n2 (larger is ok)
• Remove and save common divisors of x, y that are ≤ B.

Main Loop
While xy 6= 0 do the following:

• Perform 2B log n reductions in parallel
• Save the smallest s value found
• x := y; y := s;

Notes:
• (1− 1/B)2B log n = O(1/n2).
•One loop iteration takes O(log n) time – division by y is the bottleneck

(Beame, Cooke, Hoover [2]).

• Total number of iterations is O

(
n log log B

(log B)2

)
.

Postprocessing
This takes o(n) time in parallel:

• Restore saved common divisors ≤ B, and combine those with x + y to
compute the answer.

•Verify the answer divides the original values of x, y. If not, report failure.

Technical Theorem
Define

W (x) :=
c · (log B(x))2

log log B(x)
, c > 0,

F (x) := #{n ≤ x : n = my, P (m) ≤ B(x), log m ≥ W (x)}.

That is, F (x) counts integers n ≤ x where n has a B(x)-smooth divisor that
is ≥ exp W (x).

Theorem. Let ε > 0. For sufficiently large x we have

F (x) ≥ x ·B(x)−c(1+ε).

Proof: Exercise for the reader.

References
[1] L. M. Adleman and K. Kompella. Using smoothness to achieve parallelism. In 20th Annual ACM

Symposium on Theory of Computing, pages 528–538, 1988.

[2] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems.
SIAM Journal on Computing, 15:994–1003, 1986.

[3] R. P. Brent. Analysis of the binary Euclidean algorithm. In J. F. Traub, editor, Algorithms and
Complexity, pages 321–355. Academic Press, 1976.

[4] B. Chor and O. Goldreich. An improved parallel algorithm for integer GCD. Algorithmica, 5:1–10,
1990.

[5] Tudor Jebelean. A generalization of the binary GCD algorithm. In M. Bronstein, editor, 1993 ACM
International Symposium on Symbolic and Algebraic Computation, pages 111–116, Kiev, Ukraine,
1993. ACM Press.

[6] Tudor Jebelean. A double-digit Lehmer-Euclid algorithm for finding the GCD of long integers. J.
Symbolic Comput., 19(1-3):145–157, 1995. MR 96h:11128.

[7] R. Kannan, G. Miller, and L. Rudolph. Sublinear parallel algorithm for computing the greatest
common divisor of two integers. SIAM Journal on Computing, 16(1):7–16, 1987.

[8] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Addison-
Wesley, Reading, Mass., 3rd edition, 1998.

[9] D. H. Lehmer. Euclid’s algorithm for large numbers. American Mathematical Monthly, 45:227–
233, 1938.

[10] G. B. Purdy. A carry-free algorithm for finding the greatest common divisor of two integers. Com-
puters & Mathematics with Applications, 9(2):311–316, 1983.

[11] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139–
144, 1971.

[12] Sidi Mohamed Sedjelmaci. A parallel extended gcd algorithm. J. Discrete Algorithms, 6(3):526–
538, 2008.

[13] Jonathan P. Sorenson. Two fast GCD algorithms. Journal of Algorithms, 16:110–144, 1994.

[14] Jonathan P. Sorenson. An analysis of Lehmer’s Euclidean GCD algorithm. In A. H. M. Levelt, edi-
tor, 1995 ACM International Symposium on Symbolic and Algebraic Computation, pages 254–258,
Montreal, Canada, July 1995. ACM Press.

[15] Jonathan P. Sorenson. An analysis of the generalized binary gcd algorithm. In Alf van der Poorten
and Andreas Stein, editors, High Primes and Misdemeanors: Lectures in Honour of the 60th Birth-
day of Hugh Cowie Williams, pages 327–340, Banff, Alberta, Canada, 2004.

[16] Jonathan P. Sorenson. A randomized sublinear time parallel GCD algorithm for the EREW PRAM.
Information Processing Letters, 110(5):198 – 201, 2010. Preliminary version available from
arXiv.org.

[17] Damien Stehlé and Paul Zimmermann. A binary recursive GCD algorithm. In Duncan Buell,
editor, Sixth International Algorithmic Number Theory Symposium, pages 411–425, Burlington,
Vermont, USA, June 2004. Springer. LNCS 3076.

[18] J. Stein. Computational problems associated with Racah algebra. Journal of Computational
Physics, 1:397–405, 1967.

[19] Brigitte Vallée. The complete analysis of the binary Euclidean algorithm. In Algorithmic num-
ber theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages 77–94.
Springer, Berlin, 1998. MR 2000k:11143a.

[20] Kenneth Weber. The accelerated integer GCD algorithm. ACM Trans. Math. Software, 21(1):111–
122, 1995. MR 96h:68084.

∗ Supported in part by a grant from the the Holcomb Awards Committee. Appeared as [16].

