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Higher order Carmichael numbers

See [2] for a definition and the following equivalent condition.

Theorem 3 Composite n is a Carmichael of order m if and only if n is square free and for every
prime divisor p of n and for every 1 ≤ r ≤ m, there exists i ≥ 0 with n ≡ pi mod (pr − 1).

Build the set
Sm(L) = {p prime, pr − 1 | L for all 1 ≤ r ≤ m}

and find a subset that products to 1 modulo L.

In this case the resulting problem has density close to 1. We apply the algorithm from Theorem
2, which improves upon the technique in [2] (Õ(2.3113·n) versus Õ(2.5·n)).

Other pseudoprimes

The same technique can be used to improve upon searches for other pseudoprimes found in [1].

Williams numbers: Let ε(N) be
(

∆
N

)
, the Jacobi symbol applied to some fixed integer ∆. To

construct a ∆-Lucas pseudoprime build the set

P∆(L) = {p prime, p− ε(p) | L, p - L} .

Let a be the product of all the primes in P∆(L). We seek a subset that products to ±a modulo
L that also satisfies an additional condition on the Jacobi symbol. Using the k-tree algorithm is
asymptotically faster than the method used in [1] ( Õ(k · φ(L)1/(log2(k)+1)) versus Õ(φ(L)1/2)).

Elliptic pseudoprimes: In this case build the set

PD(L) = {p prime,
(

-D
p

)
= −1, p + 1 | L, p - L} .

Now use a k-tree algorithm to find a subset product with an odd number of elements that is
congruent to −1 modulo L.

Can use similar work for strong pseudoprimes and strong Fibonacci pseudoprimes as well.

Carmichael with a billion prime factors

The current record is a Carmichael with 1101518 prime factors [4]. Here we outline a new tech-
nique and give a rough idea of the computation required by focusing on the main exponential
term.

From [4], let L be the 168-bit number

L = 215 · 38 · 55 · 74 · 113 · 132 · 172 · 192 · 232 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79

We expect the size of P to be at least 230 (a 235 calculation). Let the product of all elements of
P be a. Pick out 168 · 32 = 5376 of the elements of P and solve the subset product problem
corresponding to a. With density over 32, apply the 32-tree algorithm at a cost of roughly 32 ∗
2168/6 = 233 time and space.

Problems with density close to one

Where the Wagner algorithm only works for problems of sufficiently high density, there is a new
result that works for almost all problems of density greater than one. It is written for the subset
sum problem, but easily carries over to the subset product problem.

Theorem 2 ([3]) There is a randomized algorithm for the subset product problem that expects to
find a solution using time and space Õ(20.3113·n)

Wagner’s k-tree algorithm

This algorithm [6] for the subset product problem starts with k lists of uniformly random elements
of G. Lists are combined in the shape of a binary tree, so that an element a of a child list is a
product of two elements, one from each parent list so that a is in a subgroup of G. An element in
the root list is a solution to the problem.

Assumptions: Problem density is at least k
log2(k)

(this is a new result of the author, was previously

k). G has subgroups G = H0, H1, . . . , Hlog2(k) such that |Hi/Hi+1| ≈ |G|1/(log2(k)+1) and
computable homomorphisms φi : Hi→ Hi+1.

Theorem 1 (S, 2010) Given assumptions above, there is a randomized algorithm for the subset-
product problem (namely, Wagner’s k-tree algorithm) that takes time and space Õ(k·|G|1/(log2(k)+1))
and succeeds with probability exponentially close to 1/2.

The proof is based heavily on [5].

Subset product problem

Let G be an abelian group, and let a1, . . . , an be elements of G. The subset product problem is to
find a subset of the ai that product to the identity in G (more generally, any element of G).

Definition 1 The density of a subset product problem is given by

n

log2(|G|)
.

Solutions will be rare unless density is greater than 1. Problems with density 1 are the most
difficult.

Until recently, algorithms for the subset product problem have been deterministic. The new al-
gorithms to be discussed are randomized, and for correctness require the ai to be independent
and uniformly random elements of G. One can generally prove most choices of (a1, . . . , an) act
sufficiently like uniformly random elements. Here we simplify things by making the following
assumption.

Heuristic Assumption The primes in P act like independent, uniformly random elements of
(Z/LZ)×.

Erdös construction

Choose L to be a positive integer with many prime factors. Choosing the right L is an art and
depends on the number sought, examples include products over primes such as

L =
∏
p≤B

p and L =
∏
p≤B

pblogp(B)c .

With L chosen, the algorithm to construct a Carmichael number is as follows.

1. Construct the set P of all primes such that p− 1 divides L, but p - L.

2. Find a subset S of P that products to the identity in (Z/LZ)×.

With n =
∏
p∈S p, L dividing n − 1, and p − 1 dividing L for all p | n, n satisfies the Korselt

condition and hence is Carmichael.

To construct a Carmichael with many prime factors, let
∏
p∈P p ≡ a mod L and find a small

subset S with
∏
p∈S p ≡ a mod L. Then the product of the primes in P \S will be a Carmichael

number.

Other pseudoprimes are constructed by modifying the definition of P , and/or changing the target
of the subset product problem.

Introduction

The construction of large Carmichael numbers, as well as many other pseudoprimes, has tradi-
tionally relied on solving the subset product problem in some abelian group. We show how new
algorithms for the subset-product problem, most notably [6] and [3], lead to improvements in
many different constructions.
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