

Constructing pairing-friendly hyperelliptic curves using Weil restriction

David Mandell Freeman (Stanford University, USA) and Takakazu Satoh (Tokyo Institute of Technology, Japan)

dfreeman@cs.stanford.edu, tkkzsath@math.titech.ac.jp

THE PROBLEM

A pairing-friendly curve is a curve C over a finite field \mathbb{F}_q whose Jacobian $\mathrm{Jac}(C)$ has

- a subgroup of large prime order r
- small embedding degree $k := [\mathbb{F}_q(\zeta_r) : \mathbb{F}_q]$ with respect to r.

These curves have numerous applications in cryptography. For these applications to be efficient, we wish to minimize the parameter

$$\rho := \dim(\operatorname{Jac}(C)) \cdot \log q / \log r.$$

Constructing pairing-friendly genus 2 curves C with small ρ -values is a difficult task.

If Jac(C) is ordinary and absolutely simple, the best known constructions achieve $\rho \approx 8$ generically and $\rho \approx 4$ for some k. If Jac(C) is supersingular, then we can achieve $\rho \approx 1$, but only for $k \leq 12$.

What if we require Jac(C) to be ordinary and simple, but not absolutely simple?

Weil restriction

Given a field extension L/K, Weil restriction interprets a variety over L as a higher-dimensional variety over K. On affine varieties X, we do the following: (For projective varieties we glue affine subsets.)

- 1. Choose a K-basis $\{\alpha_i\}$ of L.
- 2. Write the equations for X in terms of the $\{\alpha_i\}$.
- 3. Collect terms with matching basis elements. These equations define $X' = \text{Res}_{L/K}(X)$.

Proposition 1 Let A/K be a g-dimensional simple abelian variety. Let L/K be a finite, separable extension. Suppose A is isogenous over L to a product of g isomorphic elliptic curves E defined over K. Then A is isogenous over K to a subvariety of the Weil restriction $\operatorname{Res}_{L/K}(E)$.

For $K = \mathbb{F}_q$, let $f_{X,q}$ be the characteristic polynomial of the q-power Frobenius endomorphism of X.

Proposition 2 Let A/\mathbb{F}_{q^d} be an abelian variety. Let $A' = \operatorname{Res}_{\mathbb{F}_{q^d}/\mathbb{F}_q}(A)$. Then $f_{A',q}(x) = f_{A,q^d}(x^d)$.

Overview of our technique

 $A = \operatorname{Jac}(C)$ is a simple abelian surface over \mathbb{F}_q .

Over the extension field \mathbb{F}_{q^d} , A maps to a product of isomorphic elliptic curves E defined over \mathbb{F}_q .

PRIMITIVE SUBGROUPS

When A is an abelian variety over \mathbb{F}_q , the Weil restriction of A from \mathbb{F}_{q^d} to \mathbb{F}_q is isogenous over \mathbb{F}_q to a product of *primitive subgroups*:

$$\operatorname{Res}_{\mathbb{F}_q^d/\mathbb{F}_q}(A) \sim \bigoplus_{e|d} V_e(A).$$

 $V_e(A)$ is defined to be the intersection of the kernels of the maps on $\operatorname{Res}_{\mathbb{F}_q^d/\mathbb{F}_q}(A)$ induced by $\operatorname{Tr}_{\mathbb{F}_q^d/\mathbb{F}_q}$. If A=E is an ordinary elliptic curve over \mathbb{F}_q , then:

- dim $V_d(E) = \varphi(d)$.
- $\operatorname{End}(E) \otimes \mathbb{Q}$ is a quadratic imaginary field K.
- For some primitive $\zeta_d \in \overline{\mathbb{Q}}$, $(\zeta_d)^d = 1$, the q-power Frobenius endomorphisms of $V_d(E)$ and E are related by

$$\operatorname{Frob}_{V_d(E)} = \zeta_d \cdot \operatorname{Frob}_E \in K(\zeta_d).$$

• $V_d(E)$ is simple if and only if $K \cap \mathbb{Q}(\zeta_d) = \mathbb{Q}$.

This means that A is isogenous to a **primitive subgroup** of the **Weil restriction** of E from \mathbb{F}_{q^d} to \mathbb{F}_q , and thus there is a dth root of unity ζ_d such that

$$\operatorname{Frob}_A = \zeta_d \cdot \operatorname{Frob}_E$$
.

Using this relationship, we construct a Frob_E so that $\zeta_d \cdot \text{Frob}_E$ has the desired pairing-friendly properties. We use the CM method to construct E from Frob_E.

From j(E) we can compute a genus 2 curve C such that $A = \operatorname{Jac}(C)$ is pairing-friendly over \mathbb{F}_q .

NON-SIMPLE ABELIAN SURFACES

Let C, C' be genus 2 curves over \mathbb{F}_q given by

$$C: y^2 = x^5 + ax^3 + bx (1$$

$$C': y^2 = x^6 + ax^3 + b. (2)$$

Suppose $b \in (\mathbb{F}_q^*)^2$. Let $c = \frac{a}{\sqrt{b}}$. Define E, E' by

$$E: Y^2 = (c+2)X^3 - (3c-10)X^2 + (3c-10)X - (c+2)$$

$$E': Y^2 = (c+2)X^3 - (3c-30)X^2 + (3c+30)X - (c-2)$$

Theorem 3 $\operatorname{Jac}(C)$ is isogenous over $\mathbb{F}_q(b^{1/8}, i)$ to $E \times E$. If $\operatorname{Jac}(C)$ is ordinary, $b \notin (\mathbb{F}_q^*)^4$, and $\operatorname{End}(E) \otimes \mathbb{Q} \not\cong \mathbb{Q}(i)$, then $\operatorname{Jac}(C)$ is simple and isogenous over \mathbb{F}_q to $V_4(E)$.

Theorem 4 $\operatorname{Jac}(C')$ is isogenous over $\mathbb{F}_q(b^{1/6}, \zeta_3)$ to $E' \times E'$. If $\operatorname{Jac}(C')$ is ordinary, $b \notin (\mathbb{F}_q^*)^6$, and $\operatorname{End}(E') \otimes \mathbb{Q} \not\cong \mathbb{Q}(\zeta_3)$, then $\operatorname{Jac}(C')$ is simple and isogenous over \mathbb{F}_q to $V_3(E')$.

THE ALGORITHM

Data: integers k, d with $d \in \{3, 4\}$ and $d \mid k$; a quadratic imaginary field $K \not\ni \zeta_d$.

Result: Primes q, r; a genus 2 curve C/\mathbb{F}_q . **Thm**: Jac(C) has embedding degree k w.r.t r.

- 1 Choose a prime $r \equiv 1 \mod k$ with $r\mathcal{O}_K = r\bar{\mathfrak{r}}$.
- **2** Choose primitive roots of unity $\zeta_k, \zeta_d \in \mathbb{F}_r$.
- 3 Compute a $\pi \in \mathcal{O}_K$ such that

 $\pi \equiv \zeta_d \pmod{\mathfrak{r}}, \quad \pi \equiv \zeta_k/\zeta_d \pmod{\overline{\mathfrak{r}}},$ and $q = \pi \overline{\pi}$ is prime.

- 4 Use the CM method to find the *j*-invariant j_0 of an elliptic curve E_0/\mathbb{F}_q with $\operatorname{End}(E_0) \cong \mathcal{O}_K$
- 5 if d=4 then

Let E be given by (*) below. Compute $c \in \mathbb{F}_q$ such that $j(E) = j_0$. Choose $a \in \mathbb{F}_q$ s.t. $\frac{a}{c} \notin (\mathbb{F}_q^*)^2$; set $b := (\frac{a}{c})^2$. Output the curve C given by (1).

6 else if d = 3 then

Let E' be given by (*) below. Compute $c \in \mathbb{F}_q$ such that $j(E') = j_0$. Choose $a \in \mathbb{F}_q$ s.t. $\frac{a}{c} \notin (\mathbb{F}_q^*)^3$; set $b := (\frac{a}{c})^2$. Set $n := \Phi_d(\pi)\Phi_d(\overline{\pi})$.

if $\#\operatorname{Jac}(C') = n$ then

igspace Output the curve C' given by (2).

else Output the quadratic twist of C'.

OUR RESULTS

We ran a Brezing-Weng variant of our algorithm:

- Choose r and π to be polynomials in K[x].
- Find x_0 such that $q(x_0)$ and $r(x_0)$ are prime.

We found pairing-friendly genus 2 curves with record ρ -values:

k	d	K	ρ -value
9	3	$\mathbb{Q}(i)$	2.67
12	4	$\mathbb{Q}(\zeta_3)$	3.00
21	3	$\mathbb{Q}(i)$	2.67
24^a	4	$\mathbb{Q}(\sqrt{-2})$	3.00
27	3	$\mathbb{Q}(i)$	2.22
39	3	$\mathbb{Q}(i)$	2.33
42	3	$\mathbb{Q}(\sqrt{-7})$	3.00
44	4	$\mathbb{Q}(\sqrt{-11})$	3.00
54	3	$\mathbb{Q}(i)$	2.44

^aThe result for k=24 was previously found by Kawazoe and Takahashi; our method properly includes theirs.