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1. Background
Some models of an algebraic curve C are better than others. In particular, low-degree models are useful:

• practically, to locate points on C quickly;
• theoretically, to prove upper bounds on the gonality of C.
Given a defining equation F (r, s) = 0 for C, we seek a bilinear transformation that reduces the degree of F
in one of its variables. Our motivating example is the modular curve X1(N), which parameterizes elliptic
curves with a point of order N . A general method to obtain a defining equation F (r, s) = 0 for X1(N) (more
precisely, the affine curve Y1(N)) is given in [4]. Roots of F may then be used to construct elliptic curves
with a point of order N (over a finite field, say), an idea exploited in [6]. The efficiency of this construction
depends critically on F , which is typically larger and of higher degree than necessary. We wish to construct
an optimized equation f (x, y) = 0, together with an explicit birational map φ that relates the roots of f
and F .

Some suitable choices for f are given in [3, 4] for N ≤ 18, in [7] for N ≤ 22, and in [1] for N ≤ 51. We
have developed a new algorithm that uses simulated annealing to find optimized models for arbitrary algebraic
curves. This algorithm has been successfully applied to X1(N) for N ≤ 101, matching and in many cases
improving these results.

2. Transformation of the Problem
Working by hand, one can often simplify F (r, s) = 0 by applying suitable series of translations and inversions,

in an attempt to remove singularities. To automate this process, we fix a small set of invertible atomic
operations φi : A2 → A2 of this kind: the maps (x, y) 7→ (x + a, y), (x, y) 7→ (1/x, y) and (x, y) 7→
(1/x, y/x) are three typical examples.

Let C be the set of curves obtained by applying a finite number of these atomic operations to the curve C0
defined by the given polynomial F0 = F . We think of C as the vertices of a graph G, with edges (C, φi ◦ C).
A path in G defines a birational map φ; reversing the path yields the inverse map.
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Figure 1: The search graph G

As stated above, our problem is to find a curve in C whose defining polynomial has minimal degree in one
of its variables, say y. Additionally, we might favor polynomials with fewer terms or smaller coefficients. To
hide these details, and for the sake of generality, we choose a cost function k on C so that k(C1) < k(C2)
whenever C1 is more desirable than C2. Our original problem of finding a better model for a given algebraic
curve is now a combinatorial optimization problem: we seek a low-cost vertex in G.

3. Simulated Annealing
The algorithm in [5] finds low-cost vertices in G by exhaustively searching a local neighborhood. Our new

algorithm uses simulated annealing, a widely used optimization method introduced by Kirkpatrick et al. in [2].
Simulated annealing is a local search algorithm: starting at the origin C0, it selects a neighboring vertex C1,
moves to it, and repeats.

The key, of course, is picking C1. The simplest approach is to select a neighbor at random, and move to
it only if it has a lower cost. Simulated annealing extends this approach, also allowing moves to higher-cost
neighbors with an appropriate probability, to avoid becoming trapped at a local minimum. This probability
is dependent on the cost difference as well as a temperature parameter T that decays during the course of
the algorithm. More precisely, the probability of moving from C1 to C2 is

p(C1, C2) = max
e

k(C1)−k(C2)
T , 1

 .

When T is large, p(C1, C2) can be high even when k(C2) is somewhat larger than k(C1). As T approaches
zero, the probability of moving to a vertex of higher cost likewise approaches zero.

Our initial implementation of the simulated annealing approach was good at finding low-cost vertices in G,
but the path used to reach them was often much longer than necessary. This made the corresponding
birational map φ more complicated than we would like, potentially requiring thousands of atomic operations.
To address this problem, we introduced the possibility of backtracking along the path from C0 to the current
vertex. With aggressive backtracking, and by limiting the search to vertices within a bounded distance of C0,
we achieve comparable results with fewer than 80 atomic operations.
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Figure 2: Backtracking during a simulated annealing search; C0, C1, . . . are visited successively

4. Example
Table 1 illustrates the algorithm applied to the “raw” model of X1(13) from [4]. The final, simplified

polynomial was obtained by applying nine atomic operations to this raw model. The rows of the table
correspond to successive vertices on the path from the initial to the final polynomial, omitting backtracks,
starting with the initial polynomial F0(x, y). For brevity, some intervening polynomials have been omitted.

The values Ti are the values of the temperature parameter at the transition from Ci−1 to Ci, and p(Ci−1, Ci)
is the probability of acceptance for this transition defined earlier.

Ci k(Ci) Ti p(Ci−1, Ci) Fi(x, y)

28.28 – – x3−x2y4+5x2y3−9x2y2+4x2y−2x2−xy3+6xy2−3xy+x−y3

28.95 1.000 0.51 x3y4 − x2 + 5x2y − 9x2y2 + 4x2y3 − 2x2y4 − xy
+ 6xy2 − 3xy3 + xy4 − y

28.58 0.998 1 y4 − x + 5xy − 9xy2 + 4xy3 − 2xy4 − x2y + 6x2y2

− 3x2y3 + x2y4 − x3y

28.61 0.998 0.97 −x3y + x2y4 − 3x2y3 + 6x2y2 − 4x2y − 2xy3 + 3xy2

− x + y3 − 3y2 + 3y − 1

...

19.27 0.624 1 x3y − 2x2y + x + xy − xy2 + y + y2

19.23 0.583 1 x3y + x2y − xy2 + x + y + 1

Table 1: Sample run for X1(13)

5. Results
5.1. Models of X1(N).
We applied the new algorithm to the modular curves X1(N), for N ≤ 101, aiming to obtain plane models

that minimize degree (in each variable), total degree, number of terms, and coefficient size. Table 1 provides
examples of the results for selected values of N . The integers dy(C0) and dy(C1) are the degrees in y of the
initial and final curves, respectively, while t(C0) and t(C1) represent the number of terms for each.

N dy(C0) dy(C1) t(C0) t(C1)
26 8 6 82 27
40 19 15 412 171
49 39 31 1791 661
62 48 37 2666 925
75 80 63 7567 2648
88 96 76 10730 3836
101 170 134 33618 11801

Table 2: Original and final models of X1(N)

We note that the birational map φ output by the algorithm was the same for many values of N , and often
remarkably simple. For example the map

r = x2(x + 1) + (x + y)
−xy(x + 1) + (x + y)

, s = x2 + (x + y)
−xy + (x + y)

,

was the best obtained for 55 ≤ N ≤ 101. This suggests that for larger values of N , a quick and easy
optimization is to simply apply this map to the raw form of X1(N) defined in [5].

5.2. Runtime.
The major advantage of the present algorithm over our previous efforts is its speed. The algorithm given

in [5] requires approximately R8 atomic operations where typically R ≥ 8. On the other hand, a single
iteration of simulated annealing typically requires only 10,000 atomic operations, although multiple iterations
are often useful. As a result, simulated annealing is practical even for very large polynomials such as the raw
form of X1(101), which has total degree 352 and 33,618 terms.

N original algorithm simulated annealing
21 11.4 0.08
31 116.3 0.43
41 1116 1.65
51 1485 2.30
61 – 10.6
71 – 30.2
81 – 36.1
91 – 111.1
101 – 162.2

Table 3: Timings for X1(N) in seconds on a 2.66GHz Xeon core

The asymptotic running time of the simulated annealing algorithm is O(`d3), where ` is the distance between
the initial and final polynomials in atomic operations, and d is the maximum total degree over all polynomials
examined. It appears difficult to overcome the O(d3) barrier within our present framework, since this is the
time required to translate polynomials.
On the other hand, we have been able to improve performance using modular arithmetic, working modulo

some large prime p rather than over the integers. In this scenario we obtain our final result by applying the
birational map φ to the initial curve. We also find that it is better to use multiple fast rounds of simulated
annealing in place of a single slow round.

References

[1] Houria Baaziz, Equations for the modular curve X1(N) and
models of elliptic curves with torsion points, Mathematics of
Computation, 79 (2010), no. 272, 2371–2386.

[2] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization
by simulated annealing. Science, New Series 220 (1983),
no. 4598, pp. 671–680.

[3] Daniel Sion Kubert, Universal bounds on the torsion of
elliptic curves, Proceedings of the London Mathematical
Society 33 (1976), 193–237.

[4] Markus A. Reichert, Explicit determination of nontrivial
torsion structures of elliptic curves over quadratic

number fields, Mathematics of Computation 46 (1986),
no. 174, 637–658.

[5] Andrew V. Sutherland, Constructing elliptic curves over
finite fields with prescribed torsion, 2008,
http://arxiv.org/abs/0811.0296.

[6] Andrew V. Sutherland, Computing Hilbert class polynomials
with the Chinese Remainder Theorem, Mathematics of
Computation, posted on May 17, 2010, PII S
0025-5718(2010)02373-7 (to appear in print).

[7] Yifan Yang, Defining equations for modular curves,
Advances in Mathematics 204 (2006), no. 2, 481–508.

http://arxiv.org/abs/0811.0296

