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Introduction to Coleman Integration

Notation:
◮ C hyperelliptic curve over an unramified extension k

of Qp with p a prime of good ordinary reduction
◮ Points P , Q, R on C

◮ Differential forms ω, ω′ of the second kind on C

◮ Differential forms ω0, . . . , ω2g−1 a basis for H1
dR(C ),

where ωi = x idx
2y

Coleman constructed a definite integral with the
following properties:

1. Linearity:
∫ Q

P
(αω + βω′) = α

∫ Q

P
ω + β

∫ Q

P
ω′.

2. Additivity:
∫ R

P
ω =

∫ Q

P
ω +

∫ R

Q
ω.

3. Change of variables: If C ′ is another curve and
φ : C → C ′ a rigid analytic map between wide opens

then
∫ Q

P
φ∗ω =

∫ φ(Q)

φ(P) ω.

4. Fundamental theorem of calculus:
∫ Q

P
df = f (Q) − f (P).

“Tiny” Integrals

Suppose P , Q ∈ C (Cp) are in the same residue disc.

We compute
∫ Q

P
ωi locally:

1. Construct an interpolation
x(t), y(t) from P to Q.

2. Formally integrate the power
series in t:
∫ Q

P
ωi =

∫ Q

P
x i dx

2y
=

∫ 1

0
x(t)i

2y(t)
dx(t)
dt

dt.

P
Q

Integrals via Kedlaya’s algorithm

If P , Q are in different residue discs, we use Frobenius
φ to construct

∫ Q

P
ωi :

1. Find Teichmüller points P ′, Q ′ in the discs of P , Q.

2. Compute the tiny integrals
∫ P ′

P
ωi,

∫ Q

Q ′ ωi .

3. Calculate the action of Frobenius on each basis
element φ∗ωi = dfi +

∑2g−1
j=0 Mijωj.

4. Change of variables gives
∑2g−1

j=0 (M − I )ij

∫ Q ′

P ′ ωj = fi(P
′) − fi(Q

′), and solving

the linear system gives the integrals
∫ Q ′

P ′ ωi .

5. Correct endpoints to recover
∫ Q

P
ωi =

∫ P ′

P
ωi +

∫ Q ′

P ′ ωi +
∫ Q

Q ′ ωi.

P
P’

Q
Q’

“Tiny” integral

Linear system

Application: Coleman-Gross height pairing

The Coleman-Gross height pairing is a symmetric bilinear pairing

h : Div0(C ) × Div0(C ) → Qp,

which can be written as a sum of local height pairings h =
∑

v hv over all finite
places v of the number field K .

Local height above p

Let D1, D2 ∈ Div0(C ) have disjoint support and ωD1
be a normalized differential

associated to D1. The local height pairing at v above p is given by

hv(D1, D2) = trk/Qp

(
∫

D2

ωD1

)

.

To construct ωD1
:

◮ Choose a differential ω with Res(ω) = D1.
◮ Fix a splitting

H1
dR(C/k) = H

1,0
dR (C/k) ⊕ W ,

where W is the unit root subspace for the action of Frobenius.
◮ Via the canonical homomorphism Ψ : T (k)/Tl(k) −→ H1

dR(C/k), compute
Ψ(ω) = η + Ψ(ωD1

), for η holomorphic. Then ωD1
:= ω − η.

Coleman integration: meromorphic differential

Let φ be a p-power lift of Frobenius and set α := φ∗ω − pω. Then for β a
differential with residue divisor D2 = (R) − (S), we compute

∫

D2

ω =

∫ R

S

ω =
1

1 − p

(

Ψ(α) ∪ Ψ(β) +
∑

Res

(

α

∫

β

))

−
1

1 − p

(

∫ S

φ(S)

ω +

∫ φ(R)

R

ω

)

.

Example: global p-adic heights for genus 1

Example: Let C be the elliptic curve y 2 = x3 − 5x , with
Q = (−1, 2), Q ′ = (−1,−2), R = (5, 10), R ′ = (5,−10), so that
(Q) − (Q ′) = (R) − (R ′) = (9

4,−
3
8) =: P .

We compute the 13-adic height of P :
◮ Above 13, the local height h13((Q) − (Q ′), (R) − (R ′)) is

2 · 13 + 6 · 132 + 133 + 5 · 134 + O(135).
◮ Away from 13, the only nontrivial contribution is 2 log 3 (by work of Müller).
◮ So the global 13-adic height is 12 · 13 + 4 · 132 + 10 · 133 + 9 · 134 + O(135).

We compare this to Harvey’s implementation of Mazur-Stein-Tate in Sage:
sage: C = EllipticCurve([-5,0])

sage: f = C.padic height(13)

sage: f(C(9/4,-3/8)) + O(13^5)

12*13 + 4*13^2 + 10*13^3 + 9*13^4 + O(13^5)

Application: Kim’s nonabelian Chabauty method

Kim’s nonabelian Chabauty method allows us to recover integral points on elliptic
curves:

Theorem:

Let C/Z be the minimal regular model of an elliptic curve C/Q of analytic rank 1
with Tamagawa numbers all 1. Let X = C − {∞} and ω0 = dx

2y
, ω1 = xdx

2y
. Taking

a tangential base point b at ∞, let logω0
(z) =

∫ z

b
ω0, D2(z) =

∫ z

b
ω0ω1. Suppose

y is a point of infinite order in C(Z). Then X (Z) ⊂ C(Zp) is in the zero set of

f (z) := log2
ω0

(y)D2(z) − log2
ω0

(z)D2(y).

Computing D2(z): Double Coleman integrals

We take as our normalization
∫ Q

P
ωiωj :=

∫ Q

P
ωi(R)

∫ R

P
ωj.

A straightforward generalization of single Coleman integration yields the following
techniques:

◮ “Tiny” double integration (points P , Q in the same residue disc)
⊲ Compute local coordinates x(t), y(t) at P , and let

R = (a + x(Q),
√

f (a + x(Q))).

⊲ Write
∫ Q

P
ωiωj =

∫ x(Q)−x(P)

0

(

∫ a

0
x(t)jdx(t)

2y(t)

)

x(R(a))i

2y(R(a))
dx(R(a))

da
.

◮ Linking integrals between non-Weierstrass points via Frobenius:
⊲ Compute Teichmüller points P ′, Q ′ in the discs of P , Q.
⊲ Use Frobenius to calculate

∫ Q ′

P ′ ωiωk.

⊲ Recover the double integral:
∫ Q

P
ωiωk =

∫ Q ′

P ′ ωiωk −
∫ P

P ′ ωiωk −
(

∫ Q

P
ωi

)(

∫ P

P ′ ωk

)

−
(

∫ Q ′

Q
ωi

)(

∫ Q ′

P ′ ωk

)

+
∫ Q

Q ′ ωiωk.

Example: integral points

Let E : y 2 = x3 − 16x + 16 (which has minimal model 37a1). Given two integral
points x , y of infinite order, a third point z occurs in the zero set of the function

(

(
∫ z

b

ω0

)2

−

(
∫ x

b

ω0

)2
)

∫ y

x
ω0ω1 +

∫ y

x
ω0

∫ x

b
ω1

(
∫ y

b
ω0)2 − (

∫ x

b
ω0)2

−

(
∫ z

x

ω0ω1 +

∫ z

x

ω0

∫ x

b

ω1

)

.

Indeed, fixing x = (0, 4), y = (4, 4) on E , we may recover
z = (−4,−4), (8,−20), (24, 116).
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