Introduction to Coleman Integration

Notation:

» C hyperelliptic curve over an unramified extension k
of Q, with p a prime of good ordinary reduction

» Points P, Q,R on C

» Differential forms w,w’ of the second kind on C

» Differential forms w, . . . ,wy,_1 a basis for Hi5(C),
where w; = ’(2%
Coleman constructed a definite integral with the
following properties:

1. Linearity: fPO(aw + fu') = afPQw +ﬂfPQw'.

2. Additivity: f,fw = f,f’w + fgw.

3. Change of variables: If C’ is another curve and
¢ : C — (' arigid analytic map between wide opens
then fF? o*w = sz(g)w.

4. Fundamental theorem of calculus:
J& df = £(Q) — £(P).

“Tiny” Integrals

Suppose P, Q € C(C,) are in the same residue disc.
We compute fPO w locally:

1. Construct an interpolation
x(t), y(t) from P to Q.

2. Formally integrate the power
series in t:

Q Q _idx 1 x(t) dx(t
Jowi=Jp X5y = Jo ;}E(Z) Xd(z)dt‘

Integrals via Kedlaya’s algorithm

If P, Q are in different residue discs, we use Frobenius
¢ to construct f,? wj:
1. Find Teichmiiller points P’, Q" in the discs of P, Q.

. Compute the tiny integrals fPP, Wi, fg, wj.

. Calculate the action of Frobenius on each basis
element ¢*w; = df; + ijfo_l Mijw;.

. Change of variables gives

Z?ial(M — ;i ch,) wj = fi(P") — fi(Q’), and solving

the linear system gives the integrals f,s wj.

. Correct endpoints to recover
Q P’ @ Q
Jpwi=fp wit [pwit fof e

Application: Coleman-Gross height pairing

The Coleman-Gross height pairing is a symmetric bilinear pairing

h: Div’(C) x DV’(C) — Q,,
which can be written as a sum of local height pairings h = ) h, over all finite
places v of the number field K.

Local height above p

Let Dy, D, € DivO(C) have disjoint support and wp, be a normalized differential
associated to D;. The local height pairing at v above p is given by

I‘IV(Dl7 Dz) = trk/QP (/ le) .
D,
To construct wp,:

» Choose a differential w with Res(w) = Ds.
» Fix a splitting
Hip(C/K) = Hig(C/k) @ W,
where W is the unit root subspace for the action of Frobenius.
> Via the canonical homomorphism W : T (k)/T)(k) — Hiz(C/k), compute
V(w) =1 + V(wp,), for  holomorphic. Then wp, :=w — 1.

Coleman integration: meromorphic differential

Let ¢ be a p-power lift of Frobenius and set o := ¢*w — pw. Then for [ a
differential with residue divisor D, = (R) — (S), we compute

/Dzw_/SRw_lip(w(a)suw(g)tglaes (a/ ))
(Lo )

Example: global p-adic heights for genus 1

Example: Let C be the elliptic curve y? = x3 — 5x, with
Q=(-1,2),Q =(-1,-2),R = (5,10), R = (5, —10), so that
(@~ (@)= (R~ (R) =~ = P.
We compute the 13-adic height of P:
» Above 13, the local height m3((Q) — (Q'), (R) — (R")) is
2-13+6-132 4133 + 5. 13 + 0(139).
» Away from 13, the only nontrivial contribution is 2 log 3 (by work of Miiller).
> So the global 13-adic height is 12 - 13 + 4 - 132+ 10 - 133 4+ 9 - 13* 4+ O(13%).

We compare this to Harvey's implementation of Mazur-Stein-Tate in Sage:
sage: C = EllipticCurve([-5,0])

sage: f = C.padic height(13)

sage: £(C(9/4,-3/8)) + 0(13°5)

12%13 + 4x1372 + 10%13°3 + 9%1374 + 0(1375)
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Application: Kim'’s nonabelian Chabauty method

Kim's nonabelian Chabauty method allows us to recover integral points on elliptic
curves:

Theorem:

Let C/Z be the minimal regular model of an elliptic curve C/Q of analytic rank 1
with Tamagawa numbers all 1. Let X = C — {oo} and wg = g—;, wy = %. Taking
a tangential base point b at oo, let log,, (z) = sz wo, Da(z) = sz wowi. Suppose
y is a point of infinite order in C(Z). Then X(Z) C C(Z,) is in the zero set of

f(z) == logZ, (v)Da(z) — log? (2) Da(y).

Computing D,(z): Double Coleman integrals
We take as our normalization fPQ wiwj = fF? wi(R) f;? wj.

A straightforward generalization of single Coleman integration yields the following
techniques:

» “Tiny” double integration (points P, @ in the same residue disc)
> Compute local coordinates x(t), y(t) at P, and let
R =(a+ x(Q), v/f(a+x(Q))).

L X(Q)—x(P) o R(a))’ dx(R
> Write [5" wiw; = [; ( Oa x(;);(:)(ﬂ) ;y((ég;) x(da(a)).

» Linking integrals between non-Weierstrass points via Frobenius:
> Compute Teichmiiller points P’, Q" in the discs of P, Q.
> Use Frobenius to calculate f,s Wilk-

&> Recover the double integral: f,? Wik =

f,g/w,wk—f;w,wk— (fPQw,-) (f:wk) - (fQ,w,) (f,,?,wk) +f§,w,wk.

Example: integral points

Let E : y> = x> — 16x + 16 (which has minimal model 37al). Given two integral
points x, y of infinite order, a third point z occurs in the zero set of the function

z 2 x 2 f.V Wowr + nyO fXUJ z z X
X X b “1
w = w = = wow1 + W wy | -
((/b °) (/b °> ) (JJ wo)? = (J; wn)? (/ - / °/,, )
Indeed, fixing x = (0,4),y = (4,4) on E, we may recover
z=(—4,—4),(8,—20), (24,116).
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