Factoring Polynomials over Local Fields II

Sebastian Pauli

Department of Mathematics and Statistics University of North Carolina at Greensboro

Polynomial Factorization and Related Algorithms

- [Ford, Zassenhaus (1976)] Round 4 maximal order algorithm
- Montes Algorithm for ideal decomposition
- Polynomial Factorization

$$O\left(N^{4+\varepsilon}\nu(\operatorname{disc}\Phi)^{2+\varepsilon}\right)$$

[Ford, P., Roblot (2002)]

[Cantor, Gordon (2000)]

[Montes (1999)]

- [Guardia, Montes, Nart (2008–)]
 - [Ford, Veres (2010)]

 $(r)^{2+\varepsilon})$ ν(un r

Polynomial Factorization

- Polynomial Factorization
- Montes Algorithm revisited
- Complexity of Montes Algorithm

$$O(N^{3+\varepsilon}\nu(\operatorname{disc}\Phi) + N^{2+\varepsilon}\nu(\operatorname{disc}\Phi))$$

- K field complete with respect to a non-archimedian valuation
- \mathcal{O}_K valuation ring of K
- π uniformizing element in \mathcal{O}_K
- $u \qquad$ exponential valuation normalized such that $u(\pi) = 1$
- \overline{K} residue class field $\mathcal{O}_K/(\pi)$ of K with char $\overline{K} = p$
- $\Phi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ separable, squarefree, monic: the polynomial to be factored
- $\varphi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ monic: an approximation to an irreducible factor of $\Phi(x)$

Hensel's Lemma

A factorization of $\overline{\Phi}(x)$ into coprime factors over the residue class field \overline{K} can be lifted to a factorization of $\Phi(x)$ over \mathcal{O}_{K} .

Hensel's Lemma

A factorization of $\overline{\Phi}(x)$ into coprime factors over the residue class field \overline{K} can be lifted to a factorization of $\Phi(x)$ over \mathcal{O}_K .

Newton Polygons

Each distinct segment of the Newton Polygon of $\Phi(x)$ corresponds to a distinct factor of $\Phi(x)$.

Let
$$\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_{\mathcal{K}}[x]$$
 and $\vartheta(x) \in \mathcal{K}[x]$, then we set
 $\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \operatorname{res}_{x} (\Phi(x), y - \vartheta(x)).$

Let
$$\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_{\mathcal{K}}[x]$$
 and $\vartheta(x) \in \mathcal{K}[x]$, then we set
 $\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \operatorname{res}_{x} (\Phi(x), y - \vartheta(x)).$

Hensel Test

If $\chi_{\vartheta}(y) \in \mathcal{O}_{\mathcal{K}}[y]$ and $\chi_{\vartheta}(y) \equiv \rho(y)^r \mod (\pi)$ with $\overline{\rho}(y)$ irreducible in $\overline{\mathcal{K}}$ we say $\vartheta(x)$ passes the *Hensel test*.

Let
$$\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_{\mathcal{K}}[x]$$
 and $\vartheta(x) \in \mathcal{K}[x]$, then we set
 $\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \operatorname{res}_{x} (\Phi(x), y - \vartheta(x)).$

Hensel Test

If $\chi_{\vartheta}(y) \in \mathcal{O}_{\mathcal{K}}[y]$ and $\chi_{\vartheta}(y) \equiv \rho(y)^r \mod (\pi)$ with $\overline{\rho}(y)$ irreducible in $\overline{\mathcal{K}}$ we say $\vartheta(x)$ passes the *Hensel test*.

If $\vartheta(x)$ fails the Hensel Test we can derive a proper factorization of $\Phi(x)$.

Let
$$\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_{\mathcal{K}}[x]$$
 and $\vartheta(x) \in \mathcal{K}[x]$, then we set
 $\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \operatorname{res}_{x} (\Phi(x), y - \vartheta(x)).$

Hensel Test

If $\chi_{\vartheta}(y) \in \mathcal{O}_{K}[y]$ and $\chi_{\vartheta}(y) \equiv \rho(y)^{r} \mod (\pi)$ with $\overline{\rho}(y)$ irreducible in \overline{K} we say $\vartheta(x)$ passes the *Hensel test*.

If $\vartheta(x)$ fails the Hensel Test we can derive a proper factorization of $\Phi(x)$.

Newton Test

We set $v_{\Phi}^*(\varphi) := \min_{\Phi(\alpha)=0} \nu(\varphi(\alpha))$ and say the polynomial $\varphi(x)$ passes the *Newton test* if $\nu(\varphi(\alpha)) = v_{\Phi}^*(\varphi)$ for all roots α of $\Phi(x)$.

Let
$$\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_{\mathcal{K}}[x]$$
 and $\vartheta(x) \in \mathcal{K}[x]$, then we set
 $\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \operatorname{res}_{x} (\Phi(x), y - \vartheta(x)).$

Hensel Test

If $\chi_{\vartheta}(y) \in \mathcal{O}_{K}[y]$ and $\chi_{\vartheta}(y) \equiv \rho(y)^{r} \mod (\pi)$ with $\overline{\rho}(y)$ irreducible in \overline{K} we say $\vartheta(x)$ passes the *Hensel test*.

If $\vartheta(x)$ fails the Hensel Test we can derive a proper factorization of $\Phi(x)$.

Newton Test

We set $v_{\Phi}^*(\varphi) := \min_{\Phi(\alpha)=0} \nu(\varphi(\alpha))$ and say the polynomial $\varphi(x)$ passes the *Newton test* if $\nu(\varphi(\alpha)) = v_{\Phi}^*(\varphi)$ for all roots α of $\Phi(x)$.

If $\varphi(x)$ fails the Newton Test we can derive a proper factorization of $\Phi(x)$.

Irreducibility – Certificates

Let $\Phi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ and $\varphi(x) \in \mathcal{K}[x]$ with $\chi_{\varphi}(y) \in \mathcal{O}_{\mathcal{K}}[y]$.

- If $\varphi(x)$ passes the Hensel test, that is, $\overline{\chi}_{\varphi}(y) = \overline{\rho}(y)^r$ for some irreducible $\overline{\rho}(y) \in \overline{K}[y]$, we set $F_{\varphi} := \deg \overline{\rho}$.
- If φ(x) passes the Newton test, let E_φ be the denominator of v^{*}_Φ(φ) in lowest terms.

Let $\Phi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ and $\varphi(x) \in \mathcal{K}[x]$ with $\chi_{\varphi}(y) \in \mathcal{O}_{\mathcal{K}}[y]$.

- If $\varphi(x)$ passes the Hensel test, that is, $\overline{\chi}_{\varphi}(y) = \overline{\rho}(y)^r$ for some irreducible $\overline{\rho}(y) \in \overline{K}[y]$, we set $F_{\varphi} := \deg \overline{\rho}$.
- If φ(x) passes the Newton test, let E_φ be the denominator of v^{*}_Φ(φ) in lowest terms.

Two Element Certificates

A two-element certificate for $\Phi(x)$ is a pair $(\Gamma(x), \Pi(x)) \in K[x]^2$ such that $\chi_{\Gamma}(t) \in \mathcal{O}_{K}[t], \ \chi_{\Pi}(t) \in \mathcal{O}_{K}[t]$, and $F_{\Gamma}E_{\Pi} = \deg \Phi$.

Let $\Phi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ and $\varphi(x) \in \mathcal{K}[x]$ with $\chi_{\varphi}(y) \in \mathcal{O}_{\mathcal{K}}[y]$.

- If $\varphi(x)$ passes the Hensel test, that is, $\overline{\chi}_{\varphi}(y) = \overline{\rho}(y)^r$ for some irreducible $\overline{\rho}(y) \in \overline{K}[y]$, we set $F_{\varphi} := \deg \overline{\rho}$.
- If φ(x) passes the Newton test, let E_φ be the denominator of v^{*}_Φ(φ) in lowest terms.

Two Element Certificates

A two-element certificate for $\Phi(x)$ is a pair $(\Gamma(x), \Pi(x)) \in K[x]^2$ such that $\chi_{\Gamma}(t) \in \mathcal{O}_{K}[t], \ \chi_{\Pi}(t) \in \mathcal{O}_{K}[t]$, and $F_{\Gamma}E_{\Pi} = \deg \Phi$.

If a two-element certificate exists for $\Phi(x)$ then $\Phi(x)$ is irreducible.

Termination

We construct a sequence $\varphi_1(x), \varphi_2(x), \ldots$ of approximations to a factor of $\Phi(x)$ such that $\nu(\varphi_1(\alpha)) < \nu(\varphi_2(\alpha)) < \ldots$ for all roots α of $\Phi(x)$ until we find one of the situations described above.

Termination

We construct a sequence $\varphi_1(x), \varphi_2(x), \ldots$ of approximations to a factor of $\Phi(x)$ such that $\nu(\varphi_1(\alpha)) < \nu(\varphi_2(\alpha)) < \ldots$ for all roots α of $\Phi(x)$ until we find one of the situations described above.

Theorem (P. 2001)

- If $\Phi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ separable, squarefree, monic,
- $\varphi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ monic,
- $\nu(\varphi(\alpha)) > 2 \cdot \nu(\operatorname{disc} \Phi) / \operatorname{deg} \Phi$ for all roots α of $\Phi(x)$, and
- the degree of any irreducible factor of $\Phi(x)$ is greater than or equal to deg φ ,

then deg $\varphi = \deg \Phi$ and $\Phi(x)$ is irreducible over K.

Input: a monic, separable, squarefree polynomial $\Phi(x) \in \mathcal{O}_{\mathcal{K}}[x]$ **Output:** a proper factorization of $\Phi(x)$ or

a two-element certificate for the irreducibility of $\Phi(x)$

•
$$t \leftarrow 1$$
, $\varphi_1 \leftarrow x$, $E \leftarrow 1$, $F \leftarrow 1$.

Repeat:

```
If φ<sub>t</sub>(x) fails the Newton test: return a factorization of Φ(x).
If we find more ramification: increase E.
...
If we find more inertia: increase F.
...
If E · F = deg Φ: return a two-element certificate.
Find φ<sub>t+1</sub>(x) ∈ O<sub>K</sub>[x] with v<sup>*</sup><sub>Φ</sub>(φ<sub>t+1</sub>) > v<sup>*</sup><sub>Φ</sub>(φ<sub>t</sub>), deg φ<sub>t+1</sub> = EF.
t ← t + 1
```

Newton Test

Round 4: Newton Polygon of the Characteristic Polynomial χ_φ(y) of φ(x)
 Montes: φ-adic Expansion of Φ(x)

Hensel Test

Round 4: Characteristic Polynomial $\chi_{\varphi^e\psi^{-1}}(y)$ of $\varphi^e(x)\psi^{-1}(x)$ where $v_{\Phi}^*(\psi) = v_{\Phi}^*(\varphi^e)$ Montes: Residual Polynomial

Construction of Next φ

The 1st Iteration - Newton Polygon

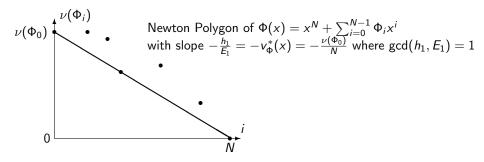
 $\varphi_1(x) = x$

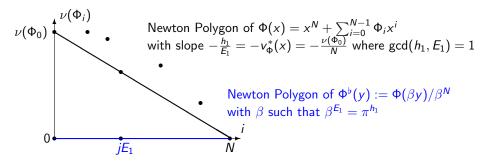
If the Newton polygon of $\Phi(x)$ consists of more than one segment, then we can derive a factorization of $\Phi(x)$.

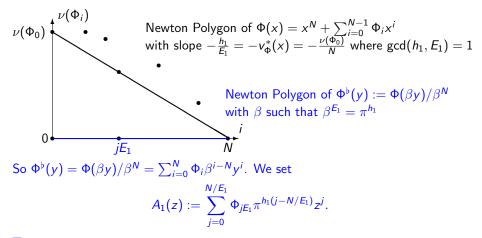
Otherwise let $-\frac{h_1}{E_1}$ be the slope of the Newton polygon in lowest terms. Then $\nu(\alpha) = v_{\Phi}^*(x) = \frac{h_1}{E_1}$ for all roots α of $\Phi(x)$.

 E_1 is a divisor of the ramification indices of all $K(\alpha)$ where α is a root of $\Phi(x)$.

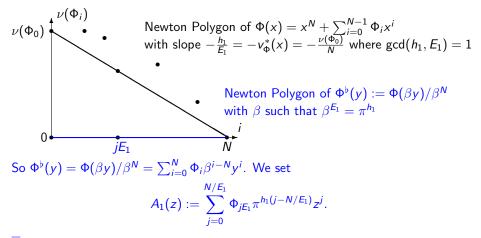
The 1st Iteration - Residual Polynomial







 $\overline{A}_1(z)$ is called the *residual polynomial* of $\Phi(x)$ with respect to $\varphi_1(x) = x$.



 $\overline{A}_1(z)$ is called the *residual polynomial* of $\Phi(x)$ with respect to $\varphi_1(x) = x$. We have $v_{\Phi}^*(A_1(x^{E_1}/\pi^{h_1})) > 0$.

If $A_1(y)$ splits into coprime factors modulo π then x^{E_1}/π^{h_1} fails the Hensel test.

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_{\Phi}^*(A_1(\varphi_1^{E_1}/\pi^{h_1})) > 0$. Assume $\overline{A}_1(z) = \overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z) \in \overline{K}[z]$. $F_1 := \deg \overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $K(\alpha)$.

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_{\Phi}^*(A_1(\varphi_1^{E_1}/\pi^{h_1})) > 0$. Assume $\overline{A}_1(z) = \overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z) \in \overline{K}[z]$. $F_1 := \deg \overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $K(\alpha)$. If $E_1F_1 = N = \deg \Phi$ then $K(\alpha)$ is an extension of degree N, which implies that $\Phi(x)$ is irreducible.

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_{\Phi}^*(A_1(\varphi_1^{E_1}/\pi^{h_1})) > 0$. Assume $\overline{A}_1(z) = \overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z) \in \overline{K}[z]$. $F_1 := \deg \overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $K(\alpha)$. If $E_1F_1 = N = \deg \Phi$ then $K(\alpha)$ is an extension of degree N, which implies that $\Phi(x)$ is irreducible.

As $v_{\Phi}^*\left(\rho_1(\varphi_1^{E_1}/\pi^{h_1})\right) > 0$ for a lift $\rho_1(z)$ of $\overline{\rho}_1(z)$ to $\mathcal{O}_K[x]$ we get $v_{\Phi}^*\left(\pi^{F_1h_1}\rho_1(\varphi_1^{E_1}/\pi^{h_1})\right) > F_1h_1 \ge h_1/E_1 = v_{\Phi}^*(\varphi_1).$

Also deg $(\rho_1(\varphi_1^{E_1}/\pi^{h_1})) = E_1F_1$. We set $\varphi_2(x) := \pi^{F_1h_1}\rho_1(\varphi_1(x)^{E_1}/\pi^{h_1})$.

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_{\Phi}^*(A_1(\varphi_1^{E_1}/\pi^{h_1})) > 0$. Assume $\overline{A}_1(z) = \overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z) \in \overline{K}[z]$. $F_1 := \deg \overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $K(\alpha)$. If $E_1F_1 = N = \deg \Phi$ then $K(\alpha)$ is an extension of degree N, which implies that $\Phi(x)$ is irreducible.

As
$$v_{\Phi}^*\left(\rho_1(\varphi_1^{E_1}/\pi^{h_1})\right) > 0$$
 for a lift $\rho_1(z)$ of $\overline{\rho}_1(z)$ to $\mathcal{O}_K[x]$ we get
 $v_{\Phi}^*\left(\pi^{F_1h_1}\rho_1(\varphi_1^{E_1}/\pi^{h_1})\right) > F_1h_1 \ge h_1/E_1 = v_{\Phi}^*(\varphi_1).$

Also deg $(\rho_1(\varphi_1^{E_1}/\pi^{h_1})) = E_1F_1$. We set $\varphi_2(x) := \pi^{F_1h_1}\rho_1(\varphi_1(x)^{E_1}/\pi^{h_1})$.

Remark

 $\varphi_2(x)$ is irreducible.

$\varphi_1(x) = x \in \mathcal{O}_K[x]$	an approximation to an irreducible factor of $\Phi(x)$
$h_1/E_1=v_{\Phi}^*(arphi_1)$	with $gcd(\mathit{h}_1, \mathit{E}_1) = 1$
<i>E</i> ₁	the maximum known ramification index
$\overline{A}_1(z)$	the residual polynomial with respect to $\varphi_1(x) = x$ such that $v^*_{\Phi}(A_1(x^{E_1}/\pi^{h_1}) > 0$ is
$ ho_1(z)\in\mathcal{O}_{\mathcal{K}}[z]$	irreducible modulo π , such that $\overline{\mathcal{A}}_1(z)\equiv\overline{ ho}_1(z)^{r_1}$
γ_1	a root of $ ho_1$, so $v_{\Phi}^*\left((x^{E_1}/\pi^{h_1})-\gamma_1 ight)>0$
$K_1 = K(\gamma_1)$	the maximum known unramified subfield
$F_1 = [K_1 : K]$	the maximum known inertia degree

The 2nd Iteration - Newton Polygon

Find $\nu(\varphi_2(\alpha))$ for all roots α of $\Phi(x)$.

φ_2 -expansion

There are unique $a_i(x) \in \mathcal{O}_{\mathcal{K}}[x]$ with deg $a_i < \deg \varphi_2 = n_2$ such that

$$\Phi(x) = \sum_{i=0}^{N/n_2} a_i(x)\varphi_2(x)^i.$$

We have $0 = \Phi(\alpha) = \sum_{i=0}^{N/n} a_i(\alpha) \varphi_2^i(\alpha)$ for all roots α of $\Phi(x)$.

 $\chi(y) = \sum_{i=0}^{N/n} a_i(\alpha) y^i = \sum_{i=0}^{N/n} \sum_{j=0}^{E_1 F_1 - 1} a_{ij} \alpha^j y^i \text{ is a polynomial with root } \varphi_2(\alpha).$

The 2nd Iteration - Newton Polygon

Find $\nu(\varphi_2(\alpha))$ for all roots α of $\Phi(x)$.

φ_2 -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_2 = n_2$ such that

$$\Phi(x) = \sum_{i=0}^{N/n_2} a_i(x)\varphi_2(x)^i.$$

We have $0 = \Phi(\alpha) = \sum_{i=0}^{N/n} a_i(\alpha) \varphi_2^i(\alpha)$ for all roots α of $\Phi(x)$. $\chi(y) = \sum_{i=0}^{N/n} a_i(\alpha) y^i = \sum_{i=0}^{N/n} \sum_{j=0}^{E_1 F_1 - 1} a_{ij} \alpha^j y^i$ is a polynomial with root $\varphi_2(\alpha)$. As the valuations

$$\nu(\alpha) = h_1/E_1, \ldots, \nu(\alpha^{E_1-1}) = (E_1-1)h_1/E_1$$

are distinct (and not in \mathbb{Z}) and

$$1, lpha^{\mathcal{E}_1}/\pi^{h_1} \equiv \gamma_1 mod (\pi), \ \ldots \ , \left(lpha^{\mathcal{E}_1}/\pi^{h_1}
ight)^{\mathcal{F}_1-1} \equiv \gamma_1^{\mathcal{F}_1-1} mod (\pi)$$

are linearly independent over $\mathcal{O}_{\mathcal{K}}$, we have $v_{\Phi}^*(a_i) = \min_{0 \le j \le n-1} \nu(a_{ij})(h_1/E_1)^j$.

The 2nd Iteration - Newton Polygon

Find $\nu(\varphi_2(\alpha))$ for all roots α of $\Phi(x)$.

φ_2 -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_2 = n_2$ such that

$$\Phi(x) = \sum_{i=0}^{N/n_2} a_i(x)\varphi_2(x)^i.$$

We have $0 = \Phi(\alpha) = \sum_{i=0}^{N/n} a_i(\alpha) \varphi_2^i(\alpha)$ for all roots α of $\Phi(x)$.

 $\chi(y) = \sum_{i=0}^{N/n} a_i(\alpha) y^i = \sum_{i=0}^{N/n} \sum_{j=0}^{E_1 F_1 - 1} a_{ij} \alpha^j y^i \text{ is a polynomial with root } \varphi_2(\alpha).$

Lemma

The Newton Polygon of $\chi(y)$ yields the valuations of $\varphi_2(\alpha)$ for all roots α of $\Phi(x)$

If the Newton Polygon of $\chi(y)$ is not a line then $\varphi_2(x)$ fails the Newton test and we can derive a proper factorization of $\Phi(x)$.

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2, E_1)}$ and $E_2 = E_1 E_2^+$.

Find $s_{\pi} \in \mathbb{Z}$, $s_1 \in \mathbb{N}$ such that $\psi_2(x) = \pi^{s_{\pi}} x^{s_1}$ with $\nu(\psi_2(\alpha)) = \frac{E_2^+ h_2}{e_2}$.

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2, E_1)}$ and $E_2 = E_1 E_2^+$.

Find $s_{\pi} \in \mathbb{Z}$, $s_1 \in \mathbb{N}$ such that $\psi_2(x) = \pi^{s_{\pi}} x^{s_1}$ with $\nu(\psi_2(\alpha)) = \frac{E_2^- h_2}{e_2}$. Set m/E_2^+

$$A_2(z) := \sum_{j=0}^{m/L_2} a_{jE_2^+}(x) \psi_2^{j-m/E_2^+}(x) z^j$$

Now $v_{\Phi}^*\left(A_2\left(\varphi_2^{E_2^+}/\psi_2\right)\right) > 0.$

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2, E_1)}$ and $E_2 = E_1 E_2^+$.

Find $s_{\pi} \in \mathbb{Z}$, $s_1 \in \mathbb{N}$ such that $\psi_2(x) = \pi^{s_{\pi}} x^{s_1}$ with $\nu(\psi_2(\alpha)) = \frac{E_2^+ h_2}{e_2}$. Set

$$A_2(z) := \sum_{j=0}^{m/E_2} a_{jE_2^+}(x) \psi_2^{j-m/E_2^+}(x) z^j$$

Now
$$v_{\Phi}^*\left(A_2\left(\varphi_2^{E_2^+}/\psi_2\right)\right) > 0.$$

We use $a_{jE_2^+}(x) = \sum_{j=0}^{E_1F_1-1} a_{ij}x^j$ and $\psi_2(x) = \pi^{s_\pi}x^{s_1}$ and the relation $v_{\Phi}^*\left(x^{E_1}/\pi^{h_1} - \gamma_1\right) > 0$, where $\gamma_1 \in K_1$ to find $\overline{A}_2(z) \in \overline{K}_1[z]$.

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2, E_1)}$ and $E_2 = E_1 E_2^+$.

Find $s_{\pi} \in \mathbb{Z}$, $s_1 \in \mathbb{N}$ such that $\psi_2(x) = \pi^{s_{\pi}} x^{s_1}$ with $\nu(\psi_2(\alpha)) = \frac{E_2^- h_2}{e_2}$. Set

$$A_2(z) := \sum_{j=0}^{m/E_2} a_{jE_2^+}(x) \psi_2^{j-m/E_2^+}(x) z^j$$

Now
$$v_{\Phi}^*\left(A_2\left(\varphi_2^{E_2^+}/\psi_2\right)\right) > 0.$$

We use $a_{jE_2^+}(x) = \sum_{j=0}^{E_1F_1-1} a_{ij}x^j$ and $\psi_2(x) = \pi^{s_\pi}x^{s_1}$ and the relation $v_{\Phi}^*\left(x^{E_1}/\pi^{h_1} - \gamma_1\right) > 0$, where $\gamma_1 \in K_1$ to find $\overline{A}_2(z) \in \overline{K}_1[z]$.

Definition

 $\overline{A}_2(z)$ is the residual polynomial of $\Phi(x)$ with respect to $\varphi_2(x)$.

Let $\overline{A}_2(z)$ be the residual polynomial of $\Phi(x)$ with respect to $\varphi_2(x)$. If $\overline{A}_2(z)$ splits into coprime factors then $\varphi_2(x)\psi_2(x)^{-1}$ fails the Hensel test and we can derive a proper factorization of $\Phi(x)$.

Otherwise there is $\overline{\rho}_2(z) \in \overline{K}_1[z]$ irreducible such that $\overline{\rho}_2(z)^{r_2} = \overline{A}_2(z)$. We set $F_2^+ = \deg \overline{\rho}_2$, $F_2 = F_1 F_2^+$.

Let $\overline{A}_2(z)$ be the residual polynomial of $\Phi(x)$ with respect to $\varphi_2(x)$. If $\overline{A}_2(z)$ splits into coprime factors then $\varphi_2(x)\psi_2(x)^{-1}$ fails the Hensel test and we can derive a proper factorization of $\Phi(x)$.

Otherwise there is $\overline{\rho}_2(z) \in \overline{K}_1[z]$ irreducible such that $\overline{\rho}_2(z)^{r_2} = \overline{A}_2(z)$. We set $F_2^+ = \deg \overline{\rho}_2$, $F_2 = F_1 F_2^+$.

If $E_2F_2 = N = \deg \Phi$ then $\Phi(x)$ is irreducible.

The 2nd Iteration – Next $\varphi(x)$

From

$$\varphi_3^*(x) := \psi_2(x)^{F_2^+} \rho_2\left(\frac{\varphi_2(x)^{E_2^+}}{\psi_2(x)}\right) = \sum_{i=0}^{F_2^+} \sum_{j=0}^{F_1-1} r_{ij}\left(\frac{x^{E_1}}{\pi^{h_1}}\right)^j \psi_2(x)^{F_2^+-i} \varphi_2(x)^{iE_2^+}$$

we construct $arphi_3(x) \in \mathcal{O}_{\mathcal{K}}[x]$ such that

•
$$v^*_{\Phi}(arphi^*_3-arphi_3)>v^*_{\Phi}(arphi^*_3)$$
 and

• deg
$$\varphi_3 = E_2 F_2 = E_2^+ F_2^+ E_1 F_1$$
.

using that

- r_{ij} is congruent to a linear combination of x^{E_1}/π^{h_1} ,
- $v^*_{\Phi}(
 ho_1(x^{E_1}/\pi^{h_1})) > 0$, and
- $\deg(\rho_1(x^{E_1}/\pi^{h_1})) = E_1F_1$

The 2nd Iteration – Next $\varphi(x)$

From

$$\varphi_3^*(x) := \psi_2(x)^{F_2^+} \rho_2\left(\frac{\varphi_2(x)^{E_2^+}}{\psi_2(x)}\right) = \sum_{i=0}^{F_2^+} \sum_{j=0}^{F_1-1} r_{ij}\left(\frac{x^{E_1}}{\pi^{h_1}}\right)^j \psi_2(x)^{F_2^+-i} \varphi_2(x)^{iE_2^+}$$

we construct $arphi_3(x) \in \mathcal{O}_{\mathcal{K}}[x]$ such that

•
$$v^*_{\Phi}(arphi^*_3-arphi_3)>v^*_{\Phi}(arphi^*_3)$$
 and

• deg
$$\varphi_3 = E_2 F_2 = E_2^+ F_2^+ E_1 F_1$$
.

using that

- r_{ij} is congruent to a linear combination of x^{E_1}/π^{h_1} ,
- $v^*_{\Phi}(
 ho_1(x^{E_1}/\pi^{h_1})) > 0$, and
- $\deg(\rho_1(x^{E_1}/\pi^{h_1})) = E_1F_1$

Remark

 $\varphi_3(x)$ is irreducible.

$$\begin{split} \varphi_{t-1}(x) &\in \mathcal{O}_{K}[x] \\ h_{t-1}/e_{t-1} &= v_{\Phi}^{*}(\varphi_{t-1}) \\ E_{t-1}^{+} &= \frac{e_{t-1}}{\gcd(E_{t-2},e_{t-1})} \\ E_{t-1} &= E_{t-2} \cdot E_{t-1}^{+} \end{split}$$

•

an approximation to an irreducible factor of $\Phi(x)$ with deg $\varphi_{t-1} = E_{t-2}F_{t-2}$ with gcd $(h_{t-1}, e_{t-1}) = 1$ the increase of known ramification index the maximal known ramification index

:

The *t*-th Iteration – Newton Polygon

Find $\nu(\varphi_t(\alpha))$ for all roots α of $\Phi(x)$.

φ_t -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_t = n_t = E_{t-1}F_{t-1}$ such that $\Phi(x) = \sum_{i=0}^{N/n_t} a_i(x)\varphi_t(x)^i.$

The *t*-th Iteration – Newton Polygon

Find $\nu(\varphi_t(\alpha))$ for all roots α of $\Phi(x)$.

φ_t -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_t = n_t = E_{t-1}F_{t-1}$ such that $\Phi(x) = \sum_{i=0}^{N/n_t} a_i(x)\varphi_t(x)^i.$

The $(\varphi_1, \ldots, \varphi_{t-1})$ -expansion of the coefficients of the expansion yields the valuations of the coefficients a_i .

$$(\varphi_1, \dots, \varphi_{t-1}) \text{-expansion of } a_i(x)$$

$$a_i(x) = \sum_{j_{t-1}=0}^{E_{t-1}^+ F_{t-1}^+ - 1} \varphi_{t-1}^{j_{t-1}}(x) \cdots \sum_{j_{t-2}=0}^{E_{t-2}^+ F_{t-2}^+ - 1} \varphi_2^{j_2}(x) \sum_{j_1=0}^{E_1^+ F_1^+ - 1} x^{j_1} \cdot a_{j_1 \dots j_{t-1}}$$

The *t*-th Iteration – Newton Polygon

Find $\nu(\varphi_t(\alpha))$ for all roots α of $\Phi(x)$.

φ_t -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_t = n_t = E_{t-1}F_{t-1}$ such that $\Phi(x) = \sum_{i=0}^{N/n_t} a_i(x)\varphi_t(x)^i.$

The $(\varphi_1, \ldots, \varphi_{t-1})$ -expansion of the coefficients of the expansion yields the valuations of the coefficients a_i .

$$(\varphi_1, \dots, \varphi_{t-1}) \text{-expansion of } a_i(x)$$
$$a_i(x) = \sum_{j_{t-1}=0}^{E_{t-1}^+F_{t-1}^+ - 1} \varphi_{t-1}^{j_{t-1}}(x) \cdots \sum_{j_{t-2}=0}^{E_{t-2}^+F_{t-2}^+ - 1} \varphi_2^{j_2}(x) \sum_{j_1=0}^{E_1^+F_1^+ - 1} x^{j_1} \cdot a_{j_1\dots j_{t-1}}$$

Lemma

$$v_{\Phi}^{*}(a_{i}) = \min_{1 \leq i \leq t-1, \ 1 \leq j_{i} < E_{i}^{+}} v_{\Phi}^{*}(\varphi_{t-1}^{j_{t-1}}(x) \cdots \varphi_{2}^{j_{2}}(x) \cdot x^{j_{1}} \cdot a_{j_{1} \dots j_{t-1}})$$

Theorem

Let p be a fixed prime. We can find a breaking element or a two element certificate for the irreducibility of a polynomial $\Phi(x) \in \mathbb{Z}_p[x]$ in at most $O(N^{2+\varepsilon}\nu(\operatorname{disc} \Phi)^{2+\varepsilon})$ operations of integers less than p.

Theorem

Let p be a fixed prime. We can find a breaking element or a two element certificate for the irreducibility of a polynomial $\Phi(x) \in \mathbb{Z}_p[x]$ in at most $O(N^{2+\varepsilon}\nu(\operatorname{disc} \Phi)^{2+\varepsilon})$ operations of integers less than p.

Thank You