Factoring Polynomials over Local Fields II

Sebastian Pauli

Department of Mathematics and Statistics University of North Carolina at Greensboro

Polynomial Factorization and Related Algorithms

- Round 4 maximal order algorithm [Ford, Zassenhaus (1976)]
- Montes Algorithm for ideal decomposition [Montes (1999)]
- Polynomial Factorization **by Cantor, Gordon (2000)**

• Polynomial Factorization

$$
O\left(N^{4+\varepsilon}\nu(\operatorname{disc}\Phi)^{2+\varepsilon}\right)
$$

• Polynomial Factorization **Folynomial Factorization** [Ford, P., Roblot (2002)]

$$
[P. (2001)]
$$

- Montes Algorithm revisited [Guardia, Montes, Nart (2008–)]
- Complexity of Montes Algorithm [Ford, Veres (2010)]

$$
O(N^{3+\varepsilon}\nu(\operatorname{disc}\Phi) + N^{2+\varepsilon}\nu(\operatorname{disc}\Phi)^{2+\varepsilon})
$$

$$
2 \;/\;20
$$

- K field complete with respect to a non-archimedian valuation
- \mathcal{O}_K valuation ring of K
- π uniformizing element in \mathcal{O}_K
- ν exponential valuation normalized such that $ν(π) = 1$
- \overline{K} residue class field $\mathcal{O}_K/(\pi)$ of K with char $\overline{K} = p$
- $\Phi(x) \in \mathcal{O}_K[x]$ separable, squarefree, monic: the polynomial to be factored $\varphi(x) \in \mathcal{O}_K[x]$ monic: an approximation to an irreducible factor of $\Phi(x)$

Hensel's Lemma

A factorization of $\overline{\Phi}(x)$ into coprime factors over the residue class field \overline{K} can be lifted to a factorization of $\Phi(x)$ over \mathcal{O}_K .

Hensel's Lemma

A factorization of $\overline{\Phi}(x)$ into coprime factors over the residue class field \overline{K} can be lifted to a factorization of $\Phi(x)$ over \mathcal{O}_K .

Newton Polygons

Each distinct segment of the Newton Polygon of $\Phi(x)$ corresponds to a distinct factor of $\Phi(x)$.

Let
$$
\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_K[x]
$$
 and $\vartheta(x) \in K[x]$, then we set

$$
\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \text{res}_x (\Phi(x), y - \vartheta(x)).
$$

Let
$$
\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_K[x]
$$
 and $\vartheta(x) \in K[x]$, then we set

$$
\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \text{res}_x (\Phi(x), y - \vartheta(x)).
$$

Hensel Test

If $\chi_\vartheta(y)\in \mathcal{O}_\mathcal{K}[y]$ and $\chi_\vartheta(y)\equiv \rho(y)^r$ mod (π) with $\overline{\rho}(y)$ irreducible in $\overline{\mathcal{K}}$ we say $\vartheta(x)$ passes the Hensel test.

Let
$$
\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_K[x]
$$
 and $\vartheta(x) \in K[x]$, then we set

$$
\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \text{res}_x (\Phi(x), y - \vartheta(x)).
$$

Hensel Test

If $\chi_\vartheta(y)\in \mathcal{O}_\mathcal{K}[y]$ and $\chi_\vartheta(y)\equiv \rho(y)^r$ mod (π) with $\overline{\rho}(y)$ irreducible in $\overline{\mathcal{K}}$ we say $\vartheta(x)$ passes the Hensel test.

If $\vartheta(x)$ fails the Hensel Test we can derive a proper factorization of $\varphi(x)$.

Let
$$
\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_K[x]
$$
 and $\vartheta(x) \in K[x]$, then we set

$$
\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \text{res}_x (\Phi(x), y - \vartheta(x)).
$$

Hensel Test

If $\chi_\vartheta(y)\in \mathcal{O}_\mathcal{K}[y]$ and $\chi_\vartheta(y)\equiv \rho(y)^r$ mod (π) with $\overline{\rho}(y)$ irreducible in $\overline{\mathcal{K}}$ we say $\vartheta(x)$ passes the Hensel test.

If $\vartheta(x)$ fails the Hensel Test we can derive a proper factorization of $\varphi(x)$.

Newton Test

We set $\mathsf{v}_\Phi^*(\varphi) := \mathsf{min}_{\Phi(\alpha) = 0} \, \nu(\varphi(\alpha))$ and say the polynomial $\varphi(\mathsf{x})$ passes the Newton test if $\nu(\varphi(\alpha)) = \nu_{\Phi}^*(\varphi)$ for all roots α of $\Phi(x)$.

Let
$$
\Phi(x) := \prod_{i=1}^{N} (x - \alpha_i) \in \mathcal{O}_K[x]
$$
 and $\vartheta(x) \in K[x]$, then we set

$$
\chi_{\vartheta}(y) := \prod_{i=1}^{N} (y - \vartheta(\alpha_i)) = \text{res}_x (\Phi(x), y - \vartheta(x)).
$$

Hensel Test

If $\chi_\vartheta(y)\in \mathcal{O}_\mathcal{K}[y]$ and $\chi_\vartheta(y)\equiv \rho(y)^r$ mod (π) with $\overline{\rho}(y)$ irreducible in $\overline{\mathcal{K}}$ we say $\vartheta(x)$ passes the Hensel test.

If $\vartheta(x)$ fails the Hensel Test we can derive a proper factorization of $\varphi(x)$.

Newton Test

We set $\mathsf{v}_\Phi^*(\varphi) := \mathsf{min}_{\Phi(\alpha) = 0} \, \nu(\varphi(\alpha))$ and say the polynomial $\varphi(\mathsf{x})$ passes the Newton test if $\nu(\varphi(\alpha)) = \nu_{\Phi}^*(\varphi)$ for all roots α of $\Phi(x)$.

If $\varphi(x)$ fails the Newton Test we can derive a proper factorization of $\Phi(x)$.

Irreducibility – Certificates

Let $\Phi(x) \in \mathcal{O}_K[x]$ and $\varphi(x) \in K[x]$ with $\chi_{\varphi}(y) \in \mathcal{O}_K[y]$.

- If $\varphi(x)$ passes the Hensel test, that is, $\overline{\chi}_{\varphi}(y) = \overline{\rho}(y)^r$ for some irreducible $\overline{\rho}(y) \in \overline{K}[y]$, we set $F_{\varphi} := \deg \overline{\rho}$.
- If $\varphi(x)$ passes the Newton test, let E_φ be the denominator of $v_\Phi^*(\varphi)$ in lowest terms.

Let $\Phi(x) \in \mathcal{O}_K[x]$ and $\varphi(x) \in K[x]$ with $\chi_{\varphi}(y) \in \mathcal{O}_K[y]$.

- If $\varphi(x)$ passes the Hensel test, that is, $\overline{\chi}_{\varphi}(y) = \overline{\rho}(y)^r$ for some irreducible $\overline{\rho}(y) \in \overline{K}[y]$, we set $F_{\varphi} := \deg \overline{\rho}$.
- If $\varphi(x)$ passes the Newton test, let E_φ be the denominator of $v_\Phi^*(\varphi)$ in lowest terms.

Two Element Certificates

A two-element certificate for Φ (x) is a pair $(\Gamma(x),\Pi(x))\in K[x]^2$ such that $\chi_{\Gamma}(t) \in \mathcal{O}_K[t], \chi_{\Pi}(t) \in \mathcal{O}_K[t]$, and $F_{\Gamma}E_{\Pi} = \deg \Phi$.

Let $\Phi(x) \in \mathcal{O}_K[x]$ and $\varphi(x) \in K[x]$ with $\chi_{\varphi}(y) \in \mathcal{O}_K[y]$.

- If $\varphi(x)$ passes the Hensel test, that is, $\overline{\chi}_{\varphi}(y) = \overline{\rho}(y)^r$ for some irreducible $\overline{\rho}(y) \in \overline{K}[y]$, we set $F_{\varphi} := \deg \overline{\rho}$.
- If $\varphi(x)$ passes the Newton test, let E_φ be the denominator of $v_\Phi^*(\varphi)$ in lowest terms.

Two Element Certificates

A two-element certificate for Φ (x) is a pair $(\Gamma(x),\Pi(x))\in K[x]^2$ such that $\chi_{\Gamma}(t) \in \mathcal{O}_K[t], \chi_{\Pi}(t) \in \mathcal{O}_K[t]$, and $F_{\Gamma}E_{\Pi} = \deg \Phi$.

If a two-element certificate exists for $\Phi(x)$ then $\Phi(x)$ is irreducible.

Termination

We construct a sequence $\varphi_1(x), \varphi_2(x), \ldots$ of approximations to a factor of $\Phi(x)$ such that $\nu(\varphi_1(\alpha)) < \nu(\varphi_2(\alpha)) < \dots$ for all roots α of $\Phi(x)$ until we find one of the situations described above.

Termination

We construct a sequence $\varphi_1(x), \varphi_2(x), \ldots$ of approximations to a factor of $\Phi(x)$ such that $\nu(\varphi_1(\alpha)) < \nu(\varphi_2(\alpha)) < \dots$ for all roots α of $\Phi(x)$ until we find one of the situations described above.

Theorem (P. 2001)

- If $\Phi(x) \in \mathcal{O}_K[x]$ separable, squarefree, monic,
- $-\varphi(x) \in \mathcal{O}_K[x]$ monic,
- $\nu(\varphi(\alpha)) > 2 \cdot \nu(\operatorname{disc} \Phi) / \operatorname{deg} \Phi$ for all roots α of $\Phi(x)$, and
- the degree of any irreducible factor of $\Phi(x)$ is greater than or equal to $deg \varphi$,

then deg $\varphi = \deg \Phi$ and $\Phi(x)$ is irreducible over K.

Input: a monic, separable, squarefree polynomial $\Phi(x) \in \mathcal{O}_K[x]$ **Output:** a proper factorization of $\Phi(x)$ or

a two-element certificate for the irreducibility of $\Phi(x)$

$$
\bullet \ \ t \leftarrow 1, \ \varphi_1 \leftarrow x, \ E \leftarrow 1, \ F \leftarrow 1.
$$

• Repeat:

```
1 If \varphi_t(x) fails the Newton test: return a factorization of \Phi(x).
\bullet If we find more ramification: increase E.
3 . . .
\bullet If we find more inertia: increase F.
\bullet ...
6 If E \cdot F = \text{deg } \Phi: return a two-element certificate.
 D Find \varphi_{t+1}(x) \in \mathcal{O}_K[x] with v^*_{\Phi}(\varphi_{t+1}) > v^*_{\Phi}(\varphi_t), deg \varphi_{t+1} = \textsf{E}\textsf{F}.
8 t \leftarrow t + 1
```
Newton Test

Round 4: Newton Polygon of the Characteristic Polynomial $\chi_{\varphi}(y)$ of $\varphi(x)$ Montes: φ -adic Expansion of $\Phi(x)$

Hensel Test

Round 4: Characteristic Polynomial $\chi_{\varphi^e \psi^{-1}}(y)$ of $\varphi^e(x) \psi^{-1}(x)$ where $v^*_\Phi(\psi) = v^*_\Phi(\varphi^\mathrm{e})$ Montes: Residual Polynomial

Construction of Next φ

The 1st Iteration – Newton Polygon

 $\varphi_1(x) = x$

If the Newton polygon of $\Phi(x)$ consists of more than one segment, then we can derive a factorization of $\Phi(x)$.

Otherwise let $-\frac{h_1}{F_1}$ $\frac{n_1}{E_1}$ be the slope of the Newton polygon in lowest terms. Then $\nu(\alpha) = v_{\Phi}^*(x) = \frac{h_1}{E_1}$ for all roots α of $\Phi(x)$.

 E_1 is a divisor of the ramification indices of all $K(\alpha)$ where α is a root of $\Phi(x)$.

 $\overline{A}_1(z)$ is called the *residual polynomial* of $\Phi(x)$ with respect to $\varphi_1(x) = x$.

 $\overline{A}_1(z)$ is called the *residual polynomial* of $\Phi(x)$ with respect to $\varphi_1(x) = x$. We have $v^*_\Phi\big(A_1(x^{E_1}/\pi^{h_1})\big) > 0$. If $A_1(y)$ splits into coprime factors modulo π then x^{E_1}/π^{h_1} fails the Hensel test.

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_\Phi^*\big(A_1(\varphi_1^{E_1}/\pi^{h_1})\big) > 0$. Assume $\overline{A}_1(z)=\overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z)\in \overline{K}[z].$

 $\mathcal{F}_1:=\deg\overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $\mathcal{K}(\alpha).$

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_\Phi^*\big(A_1(\varphi_1^{E_1}/\pi^{h_1})\big) > 0$. Assume $\overline{A}_1(z)=\overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z)\in \overline{K}[z].$ $\mathcal{F}_1:=\deg\overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $\mathcal{K}(\alpha).$ If $E_1F_1 = N = \text{deg }\Phi$ then $K(\alpha)$ is an extension of degree N, which implies that $\Phi(x)$ is irreducible.

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_\Phi^*\big(A_1(\varphi_1^{E_1}/\pi^{h_1})\big) > 0$. Assume $\overline{A}_1(z)=\overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z)\in \overline{K}[z].$ $\mathcal{F}_1:=\deg\overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $\mathcal{K}(\alpha).$ If $E_1F_1 = N = \text{deg } \Phi$ then $K(\alpha)$ is an extension of degree N, which implies that $\Phi(x)$ is irreducible.

As
$$
v_{\Phi}^* \left(\rho_1(\varphi_1^{E_1}/\pi^{h_1}) \right) > 0
$$
 for a lift $\rho_1(z)$ of $\overline{\rho}_1(z)$ to $\mathcal{O}_K[x]$ we get

$$
v_{\Phi}^* \left(\pi^{F_1 h_1} \rho_1(\varphi_1^{E_1}/\pi^{h_1}) \right) > F_1 h_1 \ge h_1/E_1 = v_{\Phi}^*(\varphi_1).
$$

Also deg $\left(\rho_1(\varphi_1^{E_1}/\pi^{h_1})\right)=E_1F_1$. We set $\varphi_2(x) := \pi^{F_1 h_1} \rho_1(\varphi_1(x)^{E_1}/\pi^{h_1}).$

Let $\overline{A}_1(z)$ be the residual polynomial, so $v_\Phi^*\big(A_1(\varphi_1^{E_1}/\pi^{h_1})\big) > 0$. Assume $\overline{A}_1(z)=\overline{\rho}_1(z)^{r_1}$ for some irreducible $\overline{\rho}_1(z)\in \overline{K}[z].$ $\mathcal{F}_1:=\deg\overline{\rho}_1$ is a divisor of the inertia degrees of all extensions $\mathcal{K}(\alpha).$ If $E_1F_1 = N = \text{deg }\Phi$ then $K(\alpha)$ is an extension of degree N, which implies that $\Phi(x)$ is irreducible.

As
$$
v_{\Phi}^* \left(\rho_1(\varphi_1^{E_1}/\pi^{h_1}) \right) > 0
$$
 for a lift $\rho_1(z)$ of $\overline{\rho}_1(z)$ to $\mathcal{O}_K[x]$ we get\n
$$
v_{\Phi}^* \left(\pi^{F_1 h_1} \rho_1(\varphi_1^{E_1}/\pi^{h_1}) \right) > F_1 h_1 \ge h_1 / E_1 = v_{\Phi}^* (\varphi_1).
$$

Also deg $(\rho_1(\varphi_1^{E_1}/\pi^{h_1})) = E_1F_1$.

We set
$$
\varphi_2(x) := \pi^{F_1 h_1} \rho_1(\varphi_1(x)^{E_1}/\pi^{h_1}).
$$

Remark

 $\varphi_2(x)$ is irreducible.

The 2nd Iteration – Newton Polygon

Find $\nu\big(\varphi_2(\alpha)\big)$ for all roots α of $\Phi(x)$.

φ -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \text{deg } \varphi_2 = n_2$ such that

$$
\Phi(x)=\sum_{i=0}^{N/n_2}a_i(x)\varphi_2(x)^i.
$$

We have $0=\Phi(\alpha)=\sum_{i=0}^{N/n}a_i(\alpha)\varphi_2^i(\alpha)$ for all roots α of $\Phi(x).$

 $\chi(\mathsf{y})=\sum_{i=0}^{N/n} \mathsf{a}_i(\alpha)\mathsf{y}^i=\sum_{i=0}^{N/n}\sum_{j=0}^{E_1F_1-1}\mathsf{a}_{ij}\alpha^j\mathsf{y}^i$ is a polynomial with root $\varphi_2(\alpha).$

The 2nd Iteration – Newton Polygon

Find $\nu\big(\varphi_2(\alpha)\big)$ for all roots α of $\Phi(x)$.

φ -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \text{deg } \varphi_2 = n_2$ such that

$$
\Phi(x)=\sum_{i=0}^{N/n_2}a_i(x)\varphi_2(x)^i.
$$

We have $0=\Phi(\alpha)=\sum_{i=0}^{N/n}a_i(\alpha)\varphi_2^i(\alpha)$ for all roots α of $\Phi(x).$ $\chi(\mathsf{y})=\sum_{i=0}^{N/n} \mathsf{a}_i(\alpha)\mathsf{y}^i=\sum_{i=0}^{N/n}\sum_{j=0}^{E_1F_1-1}\mathsf{a}_{ij}\alpha^j\mathsf{y}^i$ is a polynomial with root $\varphi_2(\alpha).$ As the valuations

$$
\nu(\alpha) = h_1/E_1, \ldots , \nu(\alpha^{E_1-1}) = (E_1 - 1)h_1/E_1
$$

are distinct (and not in \mathbb{Z}) and

$$
1, \alpha^{E_1}/\pi^{h_1} \equiv \gamma_1 \text{ mod } (\pi), \ldots, (\alpha^{E_1}/\pi^{h_1})^{F_1-1} \equiv \gamma_1^{F_1-1} \text{ mod } (\pi)
$$

are linearly independent over \mathcal{O}_K , we have $\mathsf{v}_\Phi^*(a_i) = \mathsf{min}_{0 \leq j \leq n-1} \, \nu(a_{ij}) (h_1/E_1)^j.$

The 2nd Iteration – Newton Polygon

Find $\nu\big(\varphi_2(\alpha)\big)$ for all roots α of $\Phi(x)$.

φ -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_2 = n_2$ such that

$$
\Phi(x)=\sum_{i=0}^{N/n_2}a_i(x)\varphi_2(x)^i.
$$

We have $0=\Phi(\alpha)=\sum_{i=0}^{N/n}a_i(\alpha)\varphi_2^i(\alpha)$ for all roots α of $\Phi(x).$ $\chi(\mathsf{y})=\sum_{i=0}^{N/n} \mathsf{a}_i(\alpha)\mathsf{y}^i=\sum_{i=0}^{N/n}\sum_{j=0}^{E_1F_1-1}\mathsf{a}_{ij}\alpha^j\mathsf{y}^i$ is a polynomial with root $\varphi_2(\alpha).$

Lemma

The Newton Polygon of $\chi(y)$ yields the valuations of $\varphi_2(\alpha)$ for all roots α of $\Phi(x)$

If the Newton Polygon of $\chi(y)$ is not a line then $\varphi_2(x)$ fails the Newton test and we can derive a proper factorization of $\Phi(x)$.

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2)}$ $\frac{e_2}{\gcd(e_2,E_1)}$ and $E_2=E_1E_2^+$.

Find $s_\pi\in\mathbb{Z}$, $s_1\in\mathbb{N}$ such that $\psi_2(x)=\pi^{s_\pi}x^{s_1}$ with $\nu(\psi_2(\alpha))=\frac{E_2^+h_2}{\varepsilon_2}$ $\frac{2}{e_2}$.

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2)}$ $\frac{e_2}{\gcd(e_2,E_1)}$ and $E_2=E_1E_2^+$.

Find $s_\pi\in\mathbb{Z}$, $s_1\in\mathbb{N}$ such that $\psi_2(x)=\pi^{s_\pi}x^{s_1}$ with $\nu(\psi_2(\alpha))=\frac{E_2^+h_2}{\varepsilon_2}$ $\frac{2}{e_2}$. Set m/E_2^+

$$
A_2(z) := \sum_{j=0}^{m/z_2} a_{jE_2^+}(x) \psi_2^{j-m/E_2^+}(x) z^j
$$

Now $v_{\Phi}^*\Big(A_2\big(\varphi_2^{\mathcal{E}_2^+}\!/\psi_2\big)\Big)>0.$

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2)}$ $\frac{e_2}{\gcd(e_2,E_1)}$ and $E_2=E_1E_2^+$.

Find $s_\pi\in\mathbb{Z}$, $s_1\in\mathbb{N}$ such that $\psi_2(x)=\pi^{s_\pi}x^{s_1}$ with $\nu(\psi_2(\alpha))=\frac{E_2^+h_2}{\varepsilon_2}$ $\frac{2}{e_2}$. Set

$$
A_2(z):=\sum_{j=0}^{m/E_2^+}a_{jE_2^+}(x)\psi_2^{j-m/E_2^+}(x)z^j
$$

$$
\text{Now }\nu_{\Phi}^*\Big(A_2\big(\varphi_2^{E_2^+}\!/\psi_2\big)\Big)>0.
$$

We use $a_{j\bm{\mathcal{E}}_j^+}(x)=\sum_{j=0}^{\bm{\mathcal{E}}_1\bm{\mathcal{F}}_1-1}a_{ij}x^j$ and $\psi_2(x)=\pi^{\bm{s}_\pi}x^{\bm{s}_1}$ and the relation $v_{\Phi}^* \left(x^{\mathsf{E}_1}/\pi^{\mathsf{h}_1} - \gamma_1 \right) > 0$, where $\gamma_1 \in \mathsf{K}_1$ to find $\overline{A}_2(z) \in \overline{\mathsf{K}}_1[z]$.

Assume that $\varphi_2(x)$ passes the Newton Test and let $h_2/e_2 = v_{\Phi}^*(\varphi_2)$. Set $E_2^+ = \frac{e_2}{\gcd(e_2)}$ $\frac{e_2}{\gcd(e_2,E_1)}$ and $E_2=E_1E_2^+$.

Find $s_\pi\in\mathbb{Z}$, $s_1\in\mathbb{N}$ such that $\psi_2(x)=\pi^{s_\pi}x^{s_1}$ with $\nu(\psi_2(\alpha))=\frac{E_2^+h_2}{\varepsilon_2}$ $\frac{2}{e_2}$. Set

$$
A_2(z):=\sum_{j=0}^{m/E_2^+}a_{jE_2^+}(x)\psi_2^{j-m/E_2^+}(x)z^j
$$

Now
$$
v_{\Phi}^*\left(A_2\left(\varphi_2^{\mathcal{E}_2^+}/\psi_2\right)\right) > 0.
$$
\nWe use $a_{j\mathcal{E}_2^+}(x) = \sum_{j=0}^{F_1 F_1 - 1} a_{ij} x^j$ and $\psi_2(x) = \pi^{s_\pi} x^{s_1}$ and the relation $v_{\Phi}^*\left(x^{E_1}/\pi^{h_1} - \gamma_1\right) > 0$, where $\gamma_1 \in K_1$ to find $\overline{A}_2(z) \in \overline{K}_1[z]$.

Definition

 $A_2(z)$ is the residual polynomial of $\Phi(x)$ with respect to $\varphi_2(x)$.

Let $\overline{A}_2(z)$ be the residual polynomial of $\Phi(x)$ with respect to $\varphi_2(x)$. If $\overline{A}_2(z)$ splits into coprime factors then $\varphi_2(x)\psi_2(x)^{-1}$ fails the Hensel test and we can derive a proper factorization of $\Phi(x)$.

Otherwise there is $\overline{\rho}_2(z)\in \overline{K}_1[z]$ irreducible such that $\overline{\rho}_2(z)^{r_2}=\overline{A}_2(z).$ We set $F_2^+ = \text{deg}\,\overline{\rho}_2$, $F_2 = F_1F_2^+$.

Let $\overline{A}_2(z)$ be the residual polynomial of $\Phi(x)$ with respect to $\varphi_2(x)$. If $\overline{A}_2(z)$ splits into coprime factors then $\varphi_2(x)\psi_2(x)^{-1}$ fails the Hensel test and we can derive a proper factorization of $\Phi(x)$.

Otherwise there is $\overline{\rho}_2(z)\in \overline{K}_1[z]$ irreducible such that $\overline{\rho}_2(z)^{r_2}=\overline{A}_2(z).$ We set $F_2^+ = \text{deg}\,\overline{\rho}_2$, $F_2 = F_1F_2^+$.

If $E_2F_2 = N = \text{deg }\Phi$ then $\Phi(x)$ is irreducible.

The 2nd Iteration – Next $\varphi(x)$

From

$$
\varphi_3^*(x):=\psi_2(x)^{F_2^+}\rho_2\Bigg(\frac{\varphi_2(x)^{E_2^+}}{\psi_2(x)}\Bigg)=\sum_{i=0}^{F_2^+}\sum_{j=0}^{F_1-1}r_{ij}\Bigg(\frac{x^{E_1}}{\pi^{h_1}}\Bigg)^j\psi_2(x)^{F_2^+ -i}\varphi_2(x)^{iE_2^+}
$$

we construct $\varphi_3(x) \in \mathcal{O}_K[x]$ such that

$$
\bullet \ \ v_{\Phi}^*(\varphi_3^* - \varphi_3) > v_{\Phi}^*(\varphi_3^*) \text{ and }
$$

• deg
$$
\varphi_3 = E_2 F_2 = E_2^+ F_2^+ E_1 F_1
$$
.

using that

- r_{ij} is congruent to a linear combination of x^{E_1}/π^{h_1} ,
- $v^\ast_\Phi\big(\rho_1(\mathrm{\mathsf{x}}^{E_1}/\pi^{h_1})\big) > 0$, and
- $\deg(\rho_1({\mathsf{x}}^{{\mathsf{E}}_1}/\pi^{{\mathsf{h}}_1})) = {\mathsf{E}}_1{\mathsf{F}}_1$

The 2nd Iteration – Next $\varphi(x)$

From

$$
\varphi_3^*(x):=\psi_2(x)^{F_2^+}\rho_2\Bigg(\frac{\varphi_2(x)^{E_2^+}}{\psi_2(x)}\Bigg)=\sum_{i=0}^{F_2^+}\sum_{j=0}^{F_1-1}r_{ij}\Bigg(\frac{x^{E_1}}{\pi^{h_1}}\Bigg)^j\psi_2(x)^{F_2^+ -i}\varphi_2(x)^{iE_2^+}
$$

we construct $\varphi_3(x) \in \mathcal{O}_K[x]$ such that

$$
\bullet \ \ v_{\Phi}^*(\varphi_3^* - \varphi_3) > v_{\Phi}^*(\varphi_3^*) \text{ and }
$$

• deg
$$
\varphi_3 = E_2 F_2 = E_2^+ F_2^+ E_1 F_1
$$
.

using that

- r_{ij} is congruent to a linear combination of x^{E_1}/π^{h_1} ,
- $v^\ast_\Phi\big(\rho_1(\mathrm{\mathsf{x}}^{E_1}/\pi^{h_1})\big) > 0$, and
- $\deg(\rho_1({\mathsf{x}}^{{\mathsf{E}}_1}/\pi^{{\mathsf{h}}_1})) = {\mathsf{E}}_1{\mathsf{F}}_1$

Remark

 $\varphi_3(x)$ is irreducible.

 $h_{t-1}/e_{t-1} = v_{\Phi}^*$ $E_{t-1}^+ = \frac{e_{t-1}}{\gcd(E_{t-2},$ $\gcd(E_{t-2},e_{t-1})$ $E_{t-1} = E_{t-2} \cdot E_{t-1}^+$

. . .

 $\varphi_{t-1}(x) \in \mathcal{O}_K[x]$ an approximation to an irreducible factor of $\Phi(x)$ with deg $\varphi_{t-1} = E_{t-2}F_{t-2}$ with gcd $(h_{t-1}, e_{t-1}) = 1$ the increase of known ramification index the maximal known ramification index . . .

The t-th Iteration – Newton Polygon

Find $\nu\big(\varphi_t(\alpha)\big)$ for all roots α of $\Phi(x)$.

φ_t -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i <$ deg $\varphi_t = n_t = E_{t-1}F_{t-1}$ such that $\Phi(x) = \sum a_i(x) \varphi_t(x)^i$. N/n_t $i=0$

The t -th Iteration – Newton Polygon

Find $\nu\big(\varphi_t(\alpha)\big)$ for all roots α of $\Phi(x)$.

φ_t -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_t = n_t = E_{t-1}F_{t-1}$ such that $\Phi(x) = \sum a_i(x) \varphi_t(x)^i$. N/n_t $i=0$

The $(\varphi_1, \ldots, \varphi_{t-1})$ -expansion of the coefficients of the expansion yields the valuations of the coefficients a_i .

$$
\frac{(\varphi_1, \ldots, \varphi_{t-1})\text{-expansion of } a_i(x)}{E_{t-1}^+ F_{t-1}^+ - 1} \qquad E_{t-2}^+ F_{t-2}^+ - 1 \qquad E_1^+ F_1^+ - 1
$$
\n
$$
a_i(x) = \sum_{j_{t-1}=0}^{t-1} \varphi_{t-1}^{j_{t-1}}(x) \cdots \sum_{j_{t-2}=0}^{t-2} \varphi_2^j(x) \sum_{j_1=0}^{t-1} x^{j_1} \cdot a_{j_1...j_{t-1}}
$$

The t -th Iteration – Newton Polygon

Find $\nu\big(\varphi_t(\alpha)\big)$ for all roots α of $\Phi(x)$.

φ_t -expansion

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_t = n_t = E_{t-1}F_{t-1}$ such that $\Phi(x) = \sum$ N/n_t $i=0$ $a_i(x)\varphi_t(x)^i$.

The $(\varphi_1, \ldots, \varphi_{t-1})$ -expansion of the coefficients of the expansion yields the valuations of the coefficients a_i .

$$
(\varphi_1, \ldots, \varphi_{t-1})
$$
-expansion of $a_i(x)$
\n
$$
E_{t-1}^+ F_{t-1}^+ - 1
$$
\n
$$
a_i(x) = \sum_{j_{t-1}=0}^{t-1} \varphi_{t-1}^{j_{t-1}}(x) \cdots \sum_{j_{t-2}=0}^{t-1} \varphi_2^{j_2}(x) \sum_{j_1=0}^{t-1} x^{j_1} \cdot a_{j_1...j_{t-1}}
$$

emma

$$
v_{\Phi}^{*}(a_{i}) = \min_{1 \leq i \leq t-1, 1 \leq j_{i} < E_{i}^{+}} v_{\Phi}^{*}(\varphi_{t-1}^{j_{t-1}}(x) \cdots \varphi_{2}^{j_{2}}(x) \cdot x^{j_{1}} \cdot a_{j_{1}...j_{t-1}})
$$

Theorem

Let p be a fixed prime. We can find a breaking element or a two element certificate for the irreducibility of a polynomial $\Phi(x) \in \mathbb{Z}_p[x]$ in at most $O(N^{2+\epsilon}\nu(\text{disc }\Phi)^{2+\epsilon})$ operations of integers less than p.

Theorem

Let p be a fixed prime. We can find a breaking element or a two element certificate for the irreducibility of a polynomial $\Phi(x) \in \mathbb{Z}_p[x]$ in at most $O(N^{2+\epsilon}\nu(\text{disc }\Phi)^{2+\epsilon})$ operations of integers less than p.

Thank You