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Lattice sphere packings.



Lattices.

I B = (B1, . . . , Bn) basis of Euclidean space (Rn, (, )).
I L = {

∑n
i=1 aiBi | ai ∈ Z} lattice.

I min(L) := min{(`, `) | 0 6= ` ∈ L} minimum of L.
I For a :=

√
min(L)/2 the associated lattice sphere packing is

P(L) :=
.
∪`∈L Ba(`).

I Main goal in lattice theory:
Find dense lattices.
Classify all densest lattices in a given dimension.
Classify densest lattices in certain families of lattices.

Theorem.
The densest lattices are known up to dimension 8 and in dimension
24.

n 1 2 3 4 5 6 7 8 24
L A1 A2 A3 D4 D5 E6 E7 E8 Λ24

extreme 1 1 1 2 3 6 30 2408



Voronoi’s characterization.

I The space of similarity classes of n-dimensional lattices is a
compact Riemannian manifold.

I There are only finitely many similarity classes of locally densest
lattices: extreme lattice (n = 8, 2408 extreme lattices)

I Voronoi gave a characterization of extreme lattices by the
geometry of the minimal vectors
Min(L) := {` ∈ L | (`, `) = min(L)}.

I L is perfect if {πx :=xtrx | x ∈ Min(L)} = Rn×nsym .
I L is eutactic if there are λx > 0 such that In =

∑
x∈Min(L) λxπx.

I L is strongly eutactic if all λx can be chosen to be equal.

Theorem (Voronoi, 1908)

L is extreme, if and only if L is perfect and eutactic.



Strongly perfect lattices.

Definition (B. Venkov)

A lattice L is called strongly perfect if Min(L) is a spherical 5-design,
so if for all p ∈ R[x1, . . . , xn]deg≤5

1
|Min(L)|

∑
x∈Min(L)

p(x) =
∫
S

p(t)dt

where S is the sphere containing Min(L).

Equivalent are the following.

I X := Min(L) is a 5-design.
I X := Min(L) is a 4-design.
I
∑
x∈X f(x) = 0 for all harmonic polynomials f ∈ R[x1, . . . , xn] of

degree 2 and 4.
(harmonic means homogeneous and ∆(f) =

∑ d2f
dx2

i
= 0).



Continued.

Equivalent are the following.

I X := Min(L) is a 5-design.
I X := Min(L) is a 4-design.
I
∑
x∈X f(x) = 0 for all harmonic polynomials f ∈ R[x1, . . . , xn] of

degree 2 and 4.
I There is some c ∈ R such that

∑
x∈X(x, α)4 = c(α, α)2 for all

α ∈ Rn.
I

(D4)
∑
x∈X(x, α)4 = 3|X|m2

n(n+2) (α, α)2

(D2)
∑
x∈X(x, α)2 = |X|m

n (α, α)

for all α ∈ Rn where m = min(L).



Strongly perfect lattices are extreme.

Theorem.
Let L be a strongly perfect lattice. Then L is strongly eutactic and
perfect and hence extreme.

Proof. (a) The 2-design property is equivalent to L being strongly
eutactic, because by (D2)∑

x∈X
(x, α)2︸ ︷︷ ︸
απxαtr

=
m|X|
n

(α, α)︸ ︷︷ ︸
αInαtr

for all α ∈ Rn where X = Min(L), m = min(L).



Strongly perfect lattices are extreme.

Theorem.
Let L be a strongly perfect lattice. Then L is strongly eutactic and
perfect and hence extreme.

Proof. (b) 4-design implies perfection: A ∈ Rn×nsym defines
pA : α 7→ αAαtr.

U := 〈πx | x ∈ X〉 = Rn×nsym ⇔ U⊥ = {0}.

So assume that A ∈ U⊥, so

0 = trace(xtrxA) = trace(xAxtr) = xAxtr = pA(x) for all x ∈ X

By the design property we then have∫
S

p2
A(t)dt =

1
|X|

∑
x∈X

pA(x)2 = 0

and hence A = 0.



Strongly perfect lattices.

Theorem.
Let L be strongly perfect. Then min(L) min(L#) ≥ (n+ 2)/3. Here
L# = {x ∈ Rn | (x, L) ⊂ Z} is the dual lattice.

Proof. Let α ∈ Min(L#). Then

(D4)− (D2) =
∑
x∈X

(x, α)2((x, α)2 − 1)︸ ︷︷ ︸
≥0

=
|X|m
n

(α, α)
(3m(α, α)

n+ 2
− 1
)

︸ ︷︷ ︸
⇒≥0

Remember
(D4)

∑
x∈X(x, α)4 = 3|X|m2

n(n+2) (α, α)2

(D2)
∑
x∈X(x, α)2 = |X|m

n (α, α)



Dual strongly perfect lattices.

Definition
Let L be a lattice and L# its dual lattice.

I For a ∈ R≥0 the layer La := {` ∈ L | (`, `) = a} is a finite subset
of a sphere.

I L is called universally strongly perfect if all layers of L form
spherical 4-designs.

I L is called dual strongly perfect if L and L# are both strongly
perfect.

Theorem.
universally strongly perfect⇒ dual strongly perfect⇒ strongly perfect

Proof. Theta series of L θL :=
∑
a |La|qa (q = exp(πiz), =(z) > 0)

or more general θL,p :=
∑
a

∑
x∈La

p(x)qa for p ∈ Harmd are modular
forms.
L universally strongly perfect, iff θL,p = 0 for all p ∈ Harmd (d = 2, 4).
θL#,p can be computed from θL,p by Poisson-summation.



No harmonic invariants.

Theorem.
Let G = Aut(L) and assume that 〈(α, α)d〉 = Inv2d(G) for all
d = 1, . . . , t. Then all G-orbits and all non-empty layers of L are
spherical 2t-designs.

Corollary.

I If Rn is an irreducible RG-module then Inv2(G) = 〈(α, α)〉 and L
is strongly eutactic.

I In particular all irreducible root-lattices are strongly eutactic.
I If additionally Inv4(G) = 〈(α, α)2〉, then L is universally strongly

perfect.



The Thompson-Smith lattice of dimension 248.

I Let G =Th denote the sporadic simple Thompson group.
I Then G has a 248-dimensional rational representation
ρ : G→ O(248,Q).

I Since G is finite, ρ(G) fixes a lattice L ≤ Q248.
I Modular representation theory tells us that for all primes p the

FpG-module L/pL is simple.
I Therefore L = L# and L is even
I otherwise L0 := {v ∈ L | (v, v) ∈ 2Z} < L of index 2.
I Inv2d(G) = 〈(α, α)d〉 for d = 1, 2, 3. So all layers of L form

spherical 6-designs and in particular L is strongly perfect.
I min(L) min(L#) = min(L)2 ≥ 248+2

3 > 83.3, so min(L) ≥ 10.
I There is a v ∈ L with (v, v) = 12, so min(L) ∈ {10, 12}.



Classification of strongly perfect lattices.

Theorem.

I All strongly perfect lattices of dimension ≤ 12 are known
(Nebe/Venkov).

I All integral strongly perfect lattices of minimum 2 and 3 are
known (Venkov).

I There is a unique dual strongly perfect lattice of dimension 14
(Nebe/Venkov).

I Elisabeth Nossek classifies the dual strongly perfect lattices in
dimension 13,15,. . . in her thesis.

I All integral lattices L of minimum ≤ 5 such that Min(L) is a
6-design are known (Martinet).

I All lattices L of dimension ≤ 24 such that Min(L) is a 6-design
are known (Nebe/Venkov).



Extremal lattices are extreme.

Theorem.
Let L be an even unimodular lattice of dimension n = 24a+ 8b with
b = 0, 1, 2 and min(L) = 2a+ 2 (extremal lattice).

I All nonempty Lj are (11− 4b)-designs.
I If b = 0 or b = 1 then L is strongly perfect and hence extreme.
I All extremal even unimodular lattices of dimension 32 are

extreme.

Proof:
I Let L = L# ⊂ Rn be an even unimodular lattice.
I Choose p ∈ R[x1, . . . , xn], deg(p) = t > 0, ∆(p) = 0.
I Then θL,p :=

∑
`∈L p(`)q

(`,`) =
∑∞
j=1(

∑
`∈Lj

p(`))qj is a cusp
form of weight n/2 + t.

I If 2m = min(L) then θL,p is divisible by ∆m of weight 12m
I If n/2 + t < 12m, then θL,p = 0 and all layers of L are spherical
t-designs.



Strongly perfect lattices: Conclusion.

I Boris Venkov’s idea combines spherical designs and lattices
I Allows to apply other mathematical theories to prove that certain

lattices are locally densest such as:
I Representation theory of finite groups.
I Theory of modular forms.
I Combinatorics:
I Explicit knowledge of minimal vectors (Barnes-Wall lattices)
I Allows to use combinatorial means to classify strongly perfect

lattices of given dimension.
I Classification of dual strongly perfect lattices: Many more tools.

(Finite list of abelian groups L#/L, finite list of possible genera of
lattices, use modular forms or explicit enumeration of genera.)



Spherical designs.
Definition
A finite set ∅ 6= X ⊂ S := Sn−1(R) := {x ∈ Rn | (x, x) = 1} is called
spherical t-design if for all p ∈ R[x1, . . . , xn]≤t

1
|X|

∑
x∈X

p(x) =
∫
S

p(t)dt.

Clear: X is a t-design⇒ X is a t− 1-design.
Disjoint unions of t-designs are t-designs.
Fact: t designs exist for arbitrary t and n.

Goal.
Find designs of minimal cardinality, so called tight designs.

|X| ≥
(
n+ e− 1

e

)
+
(
n+ e− 2
e− 1

)
resp. 2

(
n+ e− 1

e

)
for t = 2e resp. t = 2e+ 1.



Classification of tight spherical t-designs.

Remark
Tight t-designs in Sn−1 with n ≥ 3 only exist for t ≤ 5 or t = 7, 11.
They are classified completely for t ∈ {1, 2, 3, 11}.

Examples

I n = 2: regular (t+1)-gon
I t = 1: |X| = 2

(
n−1

0

)
= 2, X = {x,−x}

I t = 2: |X| = n+ 1, simplex.
I t = 3: |X| = 2

(
n
1

)
= 2n, X = {±e1, . . . ,±en} = Min(Zn).

I t = 5: n = 3, |X| = 12, icosahedron.
I t = 7: n = 8 and X = Min(E8), |X| = 240.
I t = 7: n = 23 and X = Min(O23), |X| = 4600.
I t = 11: n = 24 and X = Min(Λ24), |X| = 196560. unique.



Tight spherical designs.

Tight spherical designs, known facts.

I Only exist for n ≤ 2 or t = 1, 2, 3, 4, 5, 7, 11.
I Classified for n ≤ 2 or t = 1, 2, 3, 11.
I Open for t = 4, 5, 7.
I {Y ⊂ Sn−1 | Y tight 5-design} ↔ {X ⊂ Sn−2 | X tight 4-design}
I t odd⇒ any tight t-design is antipodal: X = −X.
I t = 4, |X| = n(n+ 3)/2, then either n = 2 or n = (2m+ 1)2 − 3 =

6, 22, but not 46, 78, open for n ≥ 118.
I t = 5, |X| = n(n+ 1), then either n = 3 or n = (2m+ 1)2 − 2 = 7,

23, but not 47, 79, open for n ≥ 119.
I t = 7, |X| = n(n+ 1)(n+ 2)/3, then n = 3d2 − 4 = 8, 23, but not

44, 71, open for n ≥ 104.
I t ≥ 8, then t = 11, n = 24, |X| = 196560, X = Min(Λ24) (unique)



Tight spherical designs.

Open problem.

Classify tight spherical t-designs for t = 5 and t = 7.

Conjecture.

I There are only three tight 5-designs in dimension ≥ 3:
I The icosahedron in dimension 3,
I Min(E#

7 ) in dimension 7,
I Min(M#

23) in dimension 23.
I There are only two tight 7-designs in dimension ≥ 3:

I Min(E8) in dimension 8
I Min(O23) in dimension 23.



Tight designs and lattices

Theorem.

I Let X be a tight 5-design. Then
I X = −X, n = d2 − 2 with d = 2m+ 1 odd.
I Assume that (x, x) = d for all x ∈ X. Then
I (x, y) ∈ {±d,±1} for all x, y ∈ X.

I Let X be a tight 7-design. Then
I X = −X, n = 3d2 − 4. Assume that (x, x) = d for all x ∈ X.
I (x, y) ∈ {±d,±1, 0} for all x, y ∈ X.

Corollary.

LX := 〈X〉Z is an integral lattice with min(LX) ≤ d.



Tight 5-designs and lattices.

n = d2 − 2, d = 2m+ 1, X ⊂ Sn−1(d) tight 5-design. Λ := 〈X〉.
Existence for m = 1, 2, non-existence for m = 3, 4.

Theorem

I Λ is an odd lattice.
I Min(Λ) = X if m ≤ 9.
I (x, y) ∈ {±d,±1} for x, y ∈ X (odd)
I Λ0 := {v ∈ Λ | (v, v) even } = 〈x− y | x, y ∈ X〉
I 1

2Λ0 ⊂ Λ# so Γ := 1√
2
Λ0 is integral.

I |Γ#/Γ| = 2 if m+ 1 ∈ 2Z− 8Z, and m(m+ 1) odd square free.
I |Γ#/Γ| = 6 if m ∈ 2Z− 8Z, and m(m+ 1) odd square free.
I If m ∈ 2Z− 8Z, and m(m+ 1) odd square free then m ≡ −1

(mod 3).
I m 6= 4, 6, 10, 12, 22, 28, 30, 34, 42, 46, . . ..



Tight 7-designs and lattices.
n = 3d2 − 4, X ⊂ Sn−1(d) tight 7-design. Λ := 〈X〉.
Existence for d = 2, 3, non-existence for d = 4, 5.

Theorem

I Λ is an integral lattice.
I Λ is even, if d is even.
I Λ = Λ# if

I νp(d3 − d) < 3 for all primes p ≥ 5 and
I ν3(d

3 − d) < 4 and
I ν2(d) < 5.

I If Λ = Λ# then d 6∈ 4Z.
I d 6= 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, . . ..

For d = 6 we know
I Λ ⊂ R104 even unimodular of minimum 6.
I X = Min(Λ), Λ8 = ∅.
I This determines θΛ.
I All layers of Λ are spherical 7-designs.



Equivalent conditions for designs
Equivalent are:

I X spherical t-design
I
∑
x∈X f(x) = 0 for all f ∈ Harmd and all 1 ≤ d ≤ t.

I Let {e, o} = {t, t− 1} with e even and o odd. Then there is c ∈ R
such that for all α ∈ Rn∑

x∈X
(x, α)e = c(α, α)e/2,

∑
x∈X

(x, α)o = 0.

c = c(e, n, |X|) = 1·3·5···(e−1)|X|
n(n+2)···(n+e−2)

t = 7, (x, x) = d, n = 3d2 − 4, X = Y
.
∪ −Y , |Y | = n(n+ 1)(n+ 2)/6,

Λ := 〈X〉:
I
∑
x∈Y (x, α)6 = 5

2d(d2 − 1)(α, α)3

I
∑
x∈Y (x, α)4 = 3

2d
2(d2 − 1)(α, α)2

I
∑
x∈Y (x, α)2 = 1

2 (3d2 − 2)(d2 − 1)d(α, α)
I For α ∈ Λ# then rhs all integers.



Tight 7 design X = Y
.
∪ −Y , Λ = 〈X〉, Γ = Λ#

Theorem.
Λ = Λ# if

I νp(d3 − d) < 3 for all primes p ≥ 5 and
I ν3(d3 − d) < 4 and
I ν2(d) < 5.

I Proof. Know that Λ is integral.
I So it is enough to prove that Λ# is integral.
I α, β ∈ Λ# ⇒ (x, β)(x, α)((x, α)2 − 1)((x, α)2 − 4) ∈ 120Z so

d3 − d
240

(α, β)(12d2 − 8− 15d(α, α) + 5(α, α)2) ∈ Z.

I Taking α = β we obtain (α, α) ∈ Z.
I Then easily (α, β) ∈ Z for arbitrary α, β ∈ Λ#


