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Lattices.
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T(L) ::UZGL Ba(g)'
» Main goal in lattice theory:
Find dense lattices.
Classify all densest lattices in a given dimension.
Classify densest lattices in certain families of lattices.

, By,) basis of Euclidean space (R, (,)).
L={>",a;B;|a; € Z} lattice.

min(L) := min{(¢,¢) | 0 # ¢ € L} minimum of L.
For a := \/min(L)/2 the associated lattice sphere packing is

Theorem.
The densest lattices are known up to dimension 8 and in dimension
24.

n 1 2 3 4 5 6 7 8 24

L Ay | Ay | A | Dy | D5 | Eg | Ef Eg Aoy
extreme | 1 1 1 2 3 6 | 30 | 2408




Voronoi’s characterization.

» The space of similarity classes of n-dimensional lattices is a
compact Riemannian manifold.

» There are only finitely many similarity classes of locally densest
lattices: extreme lattice

» Voronoi gave a characterization of extreme lattices by the
geometry of the minimal vectors

Min(L) :={¢ € L | (¢,¢) = min(L)}.

Lis perfect if {r, =2z | x € Min(L)} = R 7.

L is eutactic if there are A, > 0 such that I, = 3°, crpin(r) AeTe-
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L is strongly eutactic if all A, can be chosen to be equal.

Theorem (Voronoi, 1908)

L is extreme, if and only if L is perfect and eutactic.



Strongly perfect lattices.

Definition (B. Venkov)

A lattice L is called strongly perfect if Min(L) is a spherical 5-design,
soifforallp € Rlzy,...,Zn]deg<s

m Z p(z) :[s'p<t)dt

z€Min(L)

where S is the sphere containing Min(L).

Equivalent are the following.

» X := Min(L) is a 5-design.

» X := Min(L) is a 4-design.

> > .ex f(x) = 0for all harmonic polynomials f € R[zy,...,z,] of
degree 2 and 4.
(harmonic means homogeneous and A(f) = ‘(ﬁ—{ =0).



Continued.

Equivalent are the following.

» X := Min(L) is a 5-design.

» X := Min(L) is a 4-design.

> > .cx f(x) = 0 forall harmonic polynomials f € R[zy,...,z,] of
degree 2 and 4.

There is some ¢ € Rsuchthat -\ (z,)* = ¢(a, o) for all
a € R™

v

(DY) T,ex(@a)t =UXE(a,0)?
(D2)  Y,ex(ma)? =m0 q)
for all & € R™ where m = min(L).




Strongly perfect lattices are extreme.

Theorem.

Let L be a strongly perfect lattice. Then L is strongly eutactic and
perfect and hence extreme.

Proof. (a) The 2-design property is equivalent to L being strongly
eutactic, because by (D2)

> @) =" (a,0)

rzeX )
ameat” al,atr

for all & € R™ where X = Min(L), m = min(L).



Strongly perfect lattices are extreme.

Theorem.

Let L be a strongly perfect lattice. Then L is strongly eutactic and
perfect and hence extreme.

Proof. (b) 4-design implies perfection: A € RY " defines
pa o= aAalT.

U:=(m, |z €X)=Ry" < Ut ={0}.
So assume that A € U+, so
0 = trace(z'"zA) = trace(zAz'") = zAz"" = pa(z) forallz € X
By the design property we then have
1
2 2
pa(t)dt = — pa(z)*=0
Jyoon =5 32

and hence A = 0.



Strongly perfect lattices.

Theorem.

Let L be strongly perfect. Then min(L) min(L#) > (n + 2)/3. Here
L# = {zx e R"* | (z,L) C Z} is the dual lattice.

Proof. Let a € Min(L#). Then
(D4) — (D2) = 3 (@ 0)(w,0) — 1) = 2 (o) (37U

n n+2
rzeX >0

X|m?
Remember (VY eex(® )’ :i|(7l‘+;)(a,a)2
Yeex(@a)? =B (a,q)



Dual strongly perfect lattices.

Definition
Let L be a lattice and L# its dual lattice.
» Fora € R the layer L, := {¢ € L | (£,£) = a} is a finite subset
of a sphere.

» [ is called universally strongly perfect if all layers of L form
spherical 4-designs.

» L is called dual strongly perfect if L and L# are both strongly
perfect.

Theorem.
universally strongly perfect = dual strongly perfect = strongly perfect

Proof. Theta series of L 0, := )", |Lal¢* (g = exp(miz), I(z) > 0)
or more general 0, :== >, > . p(z)q® for p € Harmgy are modular
forms.

L universally strongly perfect, iff 6, , = 0 for all p € Harmg (d = 2,4).
01+ , can be computed from 6y, , by Poisson-summation.



No harmonic invariants.

Theorem.

Let G = Aut(L) and assume that {(a, a)?) = Invau(G) for all
d=1,...,t. Then all G-orbits and all non-empty layers of L are
spherical 2¢-designs.

Corollary.

» If R™ is an irreducible RG-module then Invy(G) = ((a, «)) and L
is strongly eutactic.

» In particular all irreducible root-lattices are strongly eutactic.

» If additionally Inv,(G) = ((a, @)?), then L is universally strongly
perfect.



The Thompson-Smith lattice of dimension 248.

» Let G =Th denote the sporadic simple Thompson group.

» Then G has a 248-dimensional rational representation
p: G — 0(248,Q).

» Since G is finite, p(G) fixes a lattice L < Q%%.

» Modular representation theory tells us that for all primes p the
[F,G-module L/pL is simple.

» Therefore L = L# and L is even
» otherwise Ly :={v e L | (v,v) € 2Z} < L of index 2.

> Invay(G) = ((a, a)?) for d = 1,2, 3. So all layers of L form
spherical 6-designs and in particular L is strongly perfect.

» min(L) min(L#) = min(L)? > 24342 > 83.3, 50 min(L) > 10.
» Thereis a v € L with (v,v) =12, so min(L) € {10,12}.



Classification of strongly perfect lattices.

Theorem.

>

All strongly perfect lattices of dimension < 12 are known
(Nebe/Venkov).

All integral strongly perfect lattices of minimum 2 and 3 are
known (Venkov).

There is a unique dual strongly perfect lattice of dimension 14
(Nebe/Venkov).

Elisabeth Nossek classifies the dual strongly perfect lattices in
dimension 13,15,.. . in her thesis.

All integral lattices L of minimum < 5 such that Min(L) is a
6-design are known (Martinet).

All lattices L of dimension < 24 such that Min(L) is a 6-design
are known (Nebe/Venkov).



Extremal lattices are extreme.

Theorem.
Let L be an even unimodular lattice of dimension n = 24a + 8b with
b=0,1,2 and min(L) = 2a + 2 (extremal lattice).

» All nonempty L; are (11 — 4b)-designs.

» If b =0o0rb=1then L is strongly perfect and hence extreme.

» All extremal even unimodular lattices of dimension 32 are
extreme.

Proof:
» Let L = L# c R” be an even unimodular lattice.
» Choose p € Rz, ..., x,], deg(p) =t > 0, A(p) = 0.

> Then 0, =3, p(0)g“" = 3272, (Xper, p(0)¢ is @ cusp
form of weight n/2 + t.

> If 2m = min(L) then 6, , is divisible by A™ of weight 12m

» Ifn/2 4+t < 12m, then 4, , = 0 and all layers of L are spherical
t-designs.



Strongly perfect lattices: Conclusion.

» Boris Venkov’s idea combines spherical designs and lattices
» Allows to apply other mathematical theories to prove that certain
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lattices are locally densest such as:

Representation theory of finite groups.

Theory of modular forms.

Combinatorics:

Explicit knowledge of minimal vectors (Barnes-Wall lattices)

Allows to use combinatorial means to classify strongly perfect
lattices of given dimension.

Classification of dual strongly perfect lattices: Many more tools.
(Finite list of abelian groups L# /L, finite list of possible genera of
lattices, use modular forms or explicit enumeration of genera.)



Spherical designs.

Definition
Afinite set ) # X € S := S"}(R) := {x € R" | (z,z) = 1} is called
spherical ¢-design if for all p € R[z1, . .., zn]<¢
1
e 2 o@) = [ plty
rzeX

Clear: X is a t-design = X is a t — 1-design.
Disjoint unions of t-designs are t-designs.
Fact: ¢ designs exist for arbitrary ¢ and n.

Goal.
Find designs of minimal cardinality, so called tight designs.

—1 -2 —1
|X|Z<n+e )+(n+e )resp.2(n+e )
e e=1 e

fort = 2eresp. t = 2e + 1.



Classification of tight spherical ¢-designs.

Remark

Tight t-designs in S”~! with n > 3 only exist for ¢t < 5ort = 7,11.
They are classified completely for ¢t € {1,2,3,11}.

Examples

» n = 2: regular (t+1)-gon

t=1:1X|=2(";") =2, X = {2, -z}
t=2:|X|=n+1, simplex.

t=3:|X|=2(}) =2n, X = {*e1,...,+e,} = Min(Z").
t=5:n =3, |X| =12, icosahedron.

t="T:n=8and X = Min(Eg), | X| = 240.
t="T:n=23and X = Min(Oz3), | X| = 4600.

t=11:n =24 and X = Min(Aa4), | X| = 196560. unique.

vV V. vV vV VvV VY



Tight spherical designs.

Tight spherical designs, known facts.

Only existforn <2ort=1,2,3,4,5,7,11.

Classified forn <2ort¢t=1,2,3,11.

Open fort = 4,5, 7.

{Y c §"~1| Y tight 5-design} < {X c S"~2 | X tight 4-design}
t odd = any tight ¢-design is antipodal: X = —X.

t =4, |X|=n(n+3)/2,then eithern =20rn=(2m+1)2 -3 =
6, 22, but not 46, 78, open for n > 118.

t=5,|X|=n(n+1),theneithern=30orn=2m+1)2-2=7,
23, but not 47, 79, open for n > 119.

t="1,1X|=n(n+1)(n+2)/3, then n = 3d*> — 4 = 8, 23, but not
44,71, open for n > 104.

t > 8,thent =11, n =24, | X| = 196560, X = Min(Aa4) (unique)

vV VvV Vv Vv Y

v v

v



Tight spherical designs.

Open problem.
Classify tight spherical t-designs fort = 5and t = 7.

Conjecture.

» There are only three tight 5-designs in dimension > 3:
» The icosahedron in dimension 3,
» Min(E¥) in dimension 7,
» Min(MZ,) in dimension 23.

» There are only two tight 7-designs in dimension > 3:
» Min(Es) in dimension 8
» Min(O23) in dimension 23.



Tight designs and lattices

Theorem.

» Let X be a tight 5-design. Then
» X =—X,n=d>—2withd = 2m + 1 odd.
» Assume that (z,z) = d for all z € X. Then
> (z,y) € {d,£1} forall z,y € X.

» Let X be a tight 7-design. Then

» X = —X,n=3d* — 4. Assume that (z,z) = d for all z € X.
> (z,y) € {£d,£1,0} forall z,y € X.

Corollary.

Ly := (X)y is an integral lattice with min(Lx) < d.



Tight 5-designs and lattices.

n=d*—-2,d=2m+1, X C S""!(d) tight 5-design. A := (X).
Existence for m = 1, 2, non-existence for m = 3, 4.

Theorem

» Ais an odd lattice.

> Min(A) = X ifm < 9.

> (z,y) € {£d,£1} for z,y € X (odd)

» Ap:={velA]|(v,v)even} =(x—y|z,yeX)

» TAg CA#soT := %AO is integral.

IT#/T| = 2if m + 1 € 2Z — 8Z, and m(m + 1) odd square free.
|T#/T| = 6 if m € 2Z — 8Z, and m(m + 1) odd square free.

> If m € 2Z — 8Z, and m(m + 1) odd square free then m = —1
(mod 3).

> m #4,6,10,12,22, 28, 30,34,42, 46, . . ..

v
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Tight 7-designs and lattices.
n=3d*—4, X C S"1(d) tight 7-design. A := (X).
Existence for d = 2, 3, non-existence for d = 4, 5.

Theorem

» A is an integral lattice.

» Aiseven, if dis even.

> A= A#if
> v,y(d® — d) < 3 for all primes p > 5 and
» v3(d® — d) < 4and
> VQ(d) < 5.

» If A = A% then d ¢ 4Z.
> d +#4,8,12,16,20,24, 28, 36,40, 44, . . ..

For d = 6 we know
» A C R'% even unimodular of minimum 6.
» X = Min(A), Ag = 0.
» This determines 0,.
» All layers of A are spherical 7-designs.



Equivalent conditions for designs
Equivalent are:

» X spherical ¢-design
> > .ex flx)=0forall f € Harmgandall1 <d <t.

> Let {e,o} = {t,t — 1} with e even and o odd. Then there is c € R
such that for all o € R”

Z (z,a)° = c(a, a)/?, Z (z,a)° =0.

zeX rzeX

e = cle;m,| X)) = Seig e

> Yoy (@) = 3d(d* —1)(e,)®

> ZzeY(‘ra CM)4 = %dZ(dQ - 1)(0[, CY)2

> ey (@,0)? = 3(3d% - 2)(d* —~ 1)d(a, @)
» For o € A* then rhs all integers.



Tight 7design X =Y U -Y, A = (X), T = A*

Theorem.

A = A#if
» v,(d® — d) < 3 for all primes p > 5 and
» v3(d® —d) < 4and
> 5(d) < 5.

» Proof. Know that A is integral.
» So it is enough to prove that A# is integral.
> a,3 €A = (2,8)(z,a)((z,a)? — 1)((z,a)? —4) € 120Z so

d®—d

2 2
510 (o, B)(12d° — 8 — 15d(av, &) + 5, )7) € Z.

» Taking o = § we obtain (a, a) € Z.
» Then easily (a, 3) € Z for arbitrary «, 3 € A#



