Lattices and spherical designs.

[Gabriele Nebe](http://www.math.rwth-aachen.de)

Lehrstuhl D für Mathematik

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Lattice sphere packings.

Lattices.

- $B=(B_1,\ldots,B_n)$ basis of Euclidean space $(\mathbb{R}^n, (,)$.
- $L = \{ \sum_{i=1}^n a_i B_i \mid a_i \in \mathbb{Z} \}$ lattice.
- \blacktriangleright min(L) := min{(ℓ, ℓ) | 0 $\neq \ell \in L$ } minimum of L.
- For $a := \sqrt{\min(L)}/2$ the associated lattice sphere packing is $\mathcal{P}(L) := \bigcup_{\ell \in L} B_{a}(\ell).$
- \blacktriangleright Main goal in lattice theory: Find dense lattices. Classify all densest lattices in a given dimension. Classify densest lattices in certain families of lattices.

Theorem.

The densest lattices are known up to dimension 8 and in dimension 24.

Voronoi's characterization.

- \blacktriangleright The space of similarity classes of *n*-dimensional lattices is a compact Riemannian manifold.
- \triangleright There are only finitely many similarity classes of locally densest lattices: extreme lattice ($n = 8$, 2408 extreme lattices)
- \triangleright Voronoi gave a characterization of extreme lattices by the geometry of the minimal vectors $\text{Min}(L) := \{ \ell \in L \mid (\ell, \ell) = \min(L) \}.$
- It is perfect if $\{\pi_x := x^{tr}x \mid x \in \text{Min}(L)\} = \mathbb{R}^{n \times n}_{sym}$.
- \blacktriangleright L is eutactic if there are $\lambda_x>0$ such that $I_n=\sum_{x\in \text{Min}(L)}\lambda_x\pi_x.$

KORKAR KERKER E VOOR

In L is strongly eutactic if all λ_x can be chosen to be equal.

Theorem (Voronoi, 1908)

 L is extreme, if and only if L is perfect and eutactic.

Strongly perfect lattices.

Definition (B. Venkov)

A lattice L is called strongly perfect if $Min(L)$ is a spherical 5-design, so if for all $p \in \mathbb{R}[x_1,\ldots,x_n]_{deg \leq 5}$

$$
\frac{1}{|\operatorname{Min}(L)|} \sum_{x \in \operatorname{Min}(L)} p(x) = \int_{S} p(t)dt
$$

where S is the sphere containing $Min(L)$.

Equivalent are the following.

- \blacktriangleright $X := \text{Min}(L)$ is a 5-design.
- \blacktriangleright $X := \text{Min}(L)$ is a 4-design.
- ► $\sum_{x \in X} f(x) = 0$ for all harmonic polynomials $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 and 4.

(harmonic means homogeneous and $\Delta(f) = \sum \frac{d^2 f}{dx_i^2} = 0$).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Continued.

I

Equivalent are the following.

- \blacktriangleright $X := \text{Min}(L)$ is a 5-design.
- \blacktriangleright $X := \text{Min}(L)$ is a 4-design.
- $\blacktriangleright \sum_{x \in X} f(x) = 0$ for all harmonic polynomials $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 and 4.
- ► There is some $c \in \mathbb{R}$ such that $\sum_{x \in X} (x, \alpha)^4 = c(\alpha, \alpha)^2$ for all $\alpha \in \mathbb{R}^n$.

$$
(D4) \sum_{x \in X} (x, \alpha)^4 = \frac{3|X|m^2}{n(n+2)} (\alpha, \alpha)^2
$$

$$
(D2) \sum_{x \in X} (x, \alpha)^2 = \frac{|X|m}{n} (\alpha, \alpha)
$$

KORK ERKER ADAM ADA

for all $\alpha \in \mathbb{R}^n$ where $m = \min(L)$.

Strongly perfect lattices are extreme.

Theorem.

Let L be a strongly perfect lattice. Then L is strongly eutactic and perfect and hence extreme.

Proof. (a) The 2-design property is equivalent to L being strongly eutactic, because by (D2)

$$
\sum_{x \in X} (x, \alpha)^2 = \frac{m|X|}{n} \underbrace{(\alpha, \alpha)}_{\alpha I_n \alpha^{tr}}
$$

KORKARA KERKER DAGA

for all $\alpha \in \mathbb{R}^n$ where $X = \text{Min}(L)$, $m = \text{min}(L)$.

Strongly perfect lattices are extreme.

Theorem.

Let L be a strongly perfect lattice. Then L is strongly eutactic and perfect and hence extreme.

Proof. (b) 4-design implies perfection: $A \in \mathbb{R}^{n \times n}_{sym}$ defines $p_A : \alpha \mapsto \alpha A \alpha^{tr}.$

$$
U := \langle \pi_x \mid x \in X \rangle = \mathbb{R}^{n \times n}_{\text{sym}} \Leftrightarrow U^{\perp} = \{0\}.
$$

So assume that $A\in U^{\perp},$ so

$$
0 = \operatorname{trace}(x^{tr} x A) = \operatorname{trace}(x A x^{tr}) = x A x^{tr} = p_A(x)
$$
 for all $x \in X$

By the design property we then have

$$
\int_{S} p_A^2(t)dt = \frac{1}{|X|} \sum_{x \in X} p_A(x)^2 = 0
$$

KORK ERKER ADAM ADA

and hence $A = 0$.

Strongly perfect lattices.

Theorem.

Let L be strongly perfect. Then $\min(L)\min(L^{\#}) \geq (n+2)/3.$ Here $L^{\#} = \{x \in \mathbb{R}^n \mid (x, L) \subset \mathbb{Z}\}$ is the dual lattice.

Proof. Let $\alpha \in \mathrm{Min}(L^\#)$. Then

$$
(D4) - (D2) = \sum_{x \in X} (x, \alpha)^2 ((x, \alpha)^2 - 1) = \frac{|X|m}{n} (\alpha, \alpha) \underbrace{\left(\frac{3m(\alpha, \alpha)}{n+2} - 1\right)}_{\Rightarrow \ge 0}
$$

KORK ERKER ADAM ADA

Remember
$$
(D4)
$$
 $\sum_{x \in X} (x, \alpha)^4 = \frac{3|X|m^2}{n(n+2)} (\alpha, \alpha)^2$
\n $(D2)$ $\sum_{x \in X} (x, \alpha)^2 = \frac{|X|m}{n} (\alpha, \alpha)$

Dual strongly perfect lattices.

Definition

Let L be a lattice and $L^{\#}$ its dual lattice.

- For $a \in \mathbb{R}_{\geq 0}$ the layer $L_a := \{ \ell \in L \mid (\ell, \ell) = a \}$ is a finite subset of a sphere.
- \blacktriangleright L is called universally strongly perfect if all layers of L form spherical 4-designs.
- If L is called dual strongly perfect if L and $L^{\#}$ are both strongly perfect.

Theorem.

universally strongly perfect \Rightarrow dual strongly perfect \Rightarrow strongly perfect

Proof. Theta series of $L \quad \theta_L := \sum_a |L_a| q^a \quad (q = \exp(\pi i z), \Im(z) > 0)$ or more general $\theta_{L,p} := \sum_a \sum_{x \in L_a} p(x) q^a$ for $p \in Harm_d$ are modular forms.

L universally strongly perfect, iff $\theta_{L,p} = 0$ for all $p \in Harm_d$ ($d = 2, 4$). $\theta_{L\#,p}$ can be computed from $\theta_{L,p}$ by Poisson-summation.
And example $\theta_{L,p}$ is the set of t

No harmonic invariants.

Theorem.

Let $G = \operatorname{Aut}(L)$ and assume that $\langle (\alpha, \alpha)^d \rangle = \operatorname{Inv}_{2d}(G)$ for all $d = 1, \ldots, t$. Then all G-orbits and all non-empty layers of L are spherical 2t-designs.

Corollary.

- If \mathbb{R}^n is an irreducible $\mathbb{R}G$ -module then $\text{Inv}_2(G) = \langle (\alpha, \alpha) \rangle$ and L is strongly eutactic.
- \blacktriangleright In particular all irreducible root-lattices are strongly eutactic.
- If additionally $\text{Inv}_4(G) = \langle (\alpha, \alpha)^2 \rangle$, then L is universally strongly perfect.

KORK ERKER ADAM ADA

The Thompson-Smith lattice of dimension 248.

- Exect G = Th denote the sporadic simple Thompson group.
- \blacktriangleright Then G has a 248-dimensional rational representation $\rho: G \to O(248, \mathbb{Q}).$
- Since G is finite, $\rho(G)$ fixes a lattice $L \leq \mathbb{Q}^{248}$.
- \blacktriangleright Modular representation theory tells us that for all primes p the \mathbb{F}_n G-module L/pL is simple.
- Interventigale $L = L^{\#}$ and L is eventh
- \triangleright otherwise $L_0 := \{v \in L \mid (v, v) \in 2\mathbb{Z}\} < L$ of index 2.
- \blacktriangleright ${\rm Inv}_{2d}(G)=\langle (\alpha, \alpha)^d\rangle$ for $d=1, 2, 3.$ So all layers of L form spherical 6-designs and in particular L is strongly perfect.
- ► min(L) min(L[#]) = min(L)² $\geq \frac{248+2}{3} > 83.3$, so min(L) ≥ 10 .

KORK E KERKERKERKER

Figure 1 There is a $v \in L$ with $(v, v) = 12$, so $\min(L) \in \{10, 12\}$.

Classification of strongly perfect lattices.

Theorem.

- All strongly perfect lattices of dimension ≤ 12 are known (Nebe/Venkov).
- \blacktriangleright All integral strongly perfect lattices of minimum 2 and 3 are known (Venkov).
- \triangleright There is a unique dual strongly perfect lattice of dimension 14 (Nebe/Venkov).
- \triangleright Elisabeth Nossek classifies the dual strongly perfect lattices in dimension 13,15, ... in her thesis.
- All integral lattices L of minimum ≤ 5 such that $Min(L)$ is a 6-design are known (Martinet).
- All lattices L of dimension ≤ 24 such that $\text{Min}(L)$ is a 6-design are known (Nebe/Venkov).

KORK ERKER ADAM ADA

Extremal lattices are extreme.

Theorem.

Let L be an even unimodular lattice of dimension $n = 24a + 8b$ with $b = 0, 1, 2$ and $min(L) = 2a + 2$ (extremal lattice).

- All nonempty L_i are $(11 4b)$ -designs.
- If $b = 0$ or $b = 1$ then L is strongly perfect and hence extreme.
- \blacktriangleright All extremal even unimodular lattices of dimension 32 are extreme.

Proof:

- ► Let $L = L^{\#} \subset \mathbb{R}^n$ be an even unimodular lattice.
- \triangleright Choose $p \in \mathbb{R}[x_1, \ldots, x_n]$, $\deg(p) = t > 0$, $\Delta(p) = 0$.
- ► Then $\theta_{L,p} := \sum_{\ell \in L} p(\ell) q^{(\ell,\ell)} = \sum_{j=1}^\infty (\sum_{\ell \in L_j} p(\ell)) q^j$ is a cusp form of weight $n/2 + t$.
- If $2m = min(L)$ then $\theta_{L,p}$ is divisible by Δ^m of weight $12m$
- If $n/2 + t < 12m$, then $\theta_{L,p} = 0$ and all layers of L are spherical t-designs.

Strongly perfect lattices: Conclusion.

- \triangleright Boris Venkov's idea combines spherical designs and lattices
- \triangleright Allows to apply other mathematical theories to prove that certain lattices are locally densest such as:
- \blacktriangleright Representation theory of finite groups.
- \blacktriangleright Theory of modular forms.
- \blacktriangleright Combinatorics:
- \triangleright Explicit knowledge of minimal vectors (Barnes-Wall lattices)
- \blacktriangleright Allows to use combinatorial means to classify strongly perfect lattices of given dimension.
- \triangleright Classification of dual strongly perfect lattices: Many more tools. (Finite list of abelian groups $L^{\#}/L$, finite list of possible genera of lattices, use modular forms or explicit enumeration of genera.)

Spherical designs.

Definition

A finite set $\emptyset \neq X \subset S:= S^{n-1}(\mathbb{R}):= \{x \in \mathbb{R}^n \mid (x,x)=1\}$ is called spherical t-design if for all $p \in \mathbb{R}[x_1, \ldots, x_n]_{\leq t}$

$$
\frac{1}{|X|} \sum_{x \in X} p(x) = \int_S p(t)dt.
$$

Clear: X is a t-design \Rightarrow X is a t – 1-design. Disjoint unions of t -designs are t -designs. Fact: t designs exist for arbitrary t and n .

Goal.

Find designs of minimal cardinality, so called tight designs.

$$
|X| \geq \binom{n+e-1}{e} + \binom{n+e-2}{e-1} \text{ resp. } 2\binom{n+e-1}{e}
$$

for $t = 2e$ resp. $t = 2e + 1$.

Classification of tight spherical t -designs.

 α = 2: regular (t+1)-gone

Remark

Tight t -designs in S^{n-1} with $n\geq 3$ only exist for $t\leq 5$ or $t=7,11.$ They are classified completely for $t \in \{1, 2, 3, 11\}$.

Examples

\n- ▶
$$
n = 2
$$
: regular $(l+1)$ -gon
\n- ▶ $t = 1$: $|X| = 2\binom{n-1}{0} = 2$, $X = \{x, -x\}$
\n- ▶ $t = 2$: $|X| = n + 1$, simplex.
\n- ▶ $t = 3$: $|X| = 2\binom{n}{1} = 2n$, $X = \{\pm e_1, \ldots, \pm e_n\} = \text{Min}(\mathbb{Z}^n)$.
\n- ▶ $t = 5$: $n = 3$, $|X| = 12$, **icosahedron**.
\n- ▶ $t = 7$: $n = 8$ and $X = \text{Min}(\mathbb{E}_8)$, $|X| = 240$.
\n- ▶ $t = 7$: $n = 23$ and $X = \text{Min}(O_{23})$, $|X| = 4600$.
\n- ▶ $t = 11$: $n = 24$ and $X = \text{Min}(\Lambda_{24})$, $|X| = 196560$. **unique**.
\n

KOD KARD KED KED BE YOUR

Tight spherical designs.

Tight spherical designs, known facts.

- Only exist for $n \le 2$ or $t = 1, 2, 3, 4, 5, 7, 11$.
- ► Classified for $n < 2$ or $t = 1, 2, 3, 11$.
- \triangleright Open for $t = 4, 5, 7$.
- ► ${Y \subset S^{n-1} \mid Y}$ tight 5-design $} \leftrightarrow {X \subset S^{n-2} \mid X}$ tight 4-design $}$
- \triangleright t odd \Rightarrow any tight t-design is antipodal: $X = -X$.
- \blacktriangleright $t = 4$, $|X| = n(n+3)/2$, then either $n = 2$ or $n = (2m+1)^2 3 =$ 6, 22, but not 46, 78, open for $n > 118$.
- $\blacktriangleright t = 5, |X| = n(n + 1)$, then either $n = 3$ or $n = (2m + 1)^2 2 = 7$, 23, but not 47, 79, open for $n > 119$.
- \blacktriangleright $t = 7$, $|X| = n(n + 1)(n + 2)/3$, then $n = 3d^2 4 = 8$, 23, but not 44, 71, open for $n > 104$.
- \blacktriangleright t > 8, then $t = 11$, $n = 24$, $|X| = 196560$, $X = \text{Min}(\Lambda_{24})$ (unique)

Tight spherical designs.

Open problem.

Classify tight spherical *t*-designs for $t = 5$ and $t = 7$.

Conjecture.

- \blacktriangleright There are only three tight 5-designs in dimension $>$ 3:
	- \blacktriangleright The icosahedron in dimension 3.
	- \blacktriangleright Min $(E_7^{\#})$ in dimension 7,
	- \blacktriangleright $\text{Min}(M_{23}^{\#})$ in dimension 23.
- **►** There are only two tight 7-designs in dimension ≥ 3 :

KOD KARD KED KED BE YOUR

- \blacktriangleright Min(E₈) in dimension 8
- \blacktriangleright Min(O_{23}) in dimension 23.

Tight designs and lattices

Theorem.

 \blacktriangleright Let X be a tight 5-design. Then

- \blacktriangleright $X = -X, n = d^2 2$ with $d = 2m + 1$ odd.
- Assume that $(x, x) = d$ for all $x \in X$. Then
- \blacktriangleright $(x, y) \in {\{\pm d, \pm 1\}}$ for all $x, y \in X$.
- \blacktriangleright Let X be a tight 7-design. Then
	- $X = -X$, $n = 3d^2 4$. Assume that $(x, x) = d$ for all $x \in X$.

KORK ERKER ADAM ADA

 \blacktriangleright $(x, y) \in {\{\pm d, \pm 1, 0\}}$ for all $x, y \in X$.

Corollary.

 $L_X := \langle X \rangle_{\mathbb{Z}}$ is an integral lattice with $\min(L_X) \leq d$.

Tight 5-designs and lattices.

 $n=d^2-2,\, d=2m+1,\, X\subset S^{n-1}(d)$ tight 5-design. $\Lambda:=\langle X\rangle.$ Existence for $m = 1, 2$, non-existence for $m = 3, 4$.

Theorem

 \blacktriangleright Λ is an odd lattice.

$$
\blacktriangleright \text{ Min}(\Lambda) = X \text{ if } m \le 9.
$$

$$
\blacktriangleright (x, y) \in \{\pm d, \pm 1\} \text{ for } x, y \in X \text{ (odd)}
$$

$$
\blacktriangleright \ \Lambda_0 := \{ v \in \Lambda \mid (v, v) \text{ even } \} = \langle x - y \mid x, y \in X \rangle
$$

▶
$$
\frac{1}{2}\Lambda_0 \subset \Lambda^\#
$$
 so $\Gamma := \frac{1}{\sqrt{2}}\Lambda_0$ is integral.

$$
\blacktriangleright \ |\Gamma^\#/\Gamma| = 2 \text{ if } m+1 \in 2\mathbb{Z} - 8\mathbb{Z}, \text{ and } m(m+1) \text{ odd square free.}
$$

- $\blacktriangleright |\Gamma^{\#}/\Gamma| = 6$ if $m \in 2\mathbb{Z} 8\mathbb{Z}$, and $m(m+1)$ odd square free.
- If $m \in 2\mathbb{Z} 8\mathbb{Z}$, and $m(m+1)$ odd square free then $m \equiv -1$ (mod 3).

KORK ERKER ADAM ADA

 \blacktriangleright $m \neq 4, 6, 10, 12, 22, 28, 30, 34, 42, 46, \ldots$

Tight 7-designs and lattices.

 $n=3d^2-4,$ $X\subset S^{n-1}(d)$ tight 7-design. $\Lambda:=\langle X\rangle.$ Existence for $d = 2, 3$, non-existence for $d = 4, 5$.

Theorem

- \blacktriangleright Λ is an integral lattice.
- \blacktriangleright Λ is even, if d is even.
- $\Delta = \Lambda^{\#}$ if
	- $\blacktriangleright \;\nu_p(d^3-d) < 3$ for all primes $p \geq 5$ and
	- \blacktriangleright $\nu_3(d^3-d) < 4$ and
	- $\blacktriangleright \nu_2(d) < 5.$

• If
$$
\Lambda = \Lambda^{\#}
$$
 then $d \notin 4\mathbb{Z}$.

 $d \neq 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, \ldots$

For $d = 6$ we know

- $\blacktriangleright \Lambda \subset \mathbb{R}^{104}$ even unimodular of minimum 6.
- \blacktriangleright $X = \text{Min}(\Lambda)$, $\Lambda_8 = \emptyset$.
- **Fig.** This determines θ_{Λ} .
- \blacktriangleright All layers of Λ are spherical 7-designs.

KORKAR KERKER E VOOR

Equivalent conditions for designs

Equivalent are:

- \blacktriangleright X spherical *t*-design
- $\blacktriangleright \sum_{x \in X} f(x) = 0$ for all $f \in Harm_d$ and all $1 \leq d \leq t$.
- ► Let $\{e, o\} = \{t, t-1\}$ with e even and o odd. Then there is $c \in \mathbb{R}$ such that for all $\alpha \in \mathbb{R}^n$

$$
\sum_{x \in X} (x, \alpha)^e = c(\alpha, \alpha)^{e/2}, \sum_{x \in X} (x, \alpha)^o = 0.
$$

$$
c = c(e, n, |X|) = \frac{1 \cdot 3 \cdot 5 \cdots (e-1)|X|}{n(n+2)\cdots (n+e-2)}
$$

 $t = 7, (x, x) = d, n = 3d^2 - 4, X = Y \dot{\cup} - Y, |Y| = n(n + 1)(n + 2)/6,$ $\Lambda := \langle X \rangle$: $\sum_{x \in Y} (x, \alpha)^6 = \frac{5}{2} d(d^2 - 1)(\alpha, \alpha)^3$ $\sum_{x \in Y} (x, \alpha)^4 = \frac{3}{2} d^2 (d^2 - 1) (\alpha, \alpha)^2$ $\sum_{x \in Y} (x, \alpha)^2 = \frac{1}{2} (3d^2 - 2)(d^2 - 1)d(\alpha, \alpha)$

KORK ERKER ADAM ADA

For $\alpha \in \Lambda^{\#}$ then rhs all integers.

$$
Tight 7 design X = Y \dot{\cup} -Y, \Lambda = \langle X \rangle, \Gamma = \Lambda^{\#}
$$

Theorem.

 $\Lambda = \Lambda^{\#}$ if

- $\blacktriangleright \;\nu_p(d^3-d) < 3$ for all primes $p \geq 5$ and
- \blacktriangleright $\nu_3(d^3-d) < 4$ and
- $\blacktriangleright \nu_2(d) < 5.$
- **Proof.** Know that Λ is integral.
- So it is enough to prove that $\Lambda^{\#}$ is integral.

$$
\blacktriangleright \ \alpha, \beta \in \Lambda^{\#} \Rightarrow (x, \beta)(x, \alpha)((x, \alpha)^2 - 1)((x, \alpha)^2 - 4) \in 120 \mathbb{Z} \text{ so }
$$

$$
\frac{d^3 - d}{240}(\alpha, \beta)(12d^2 - 8 - 15d(\alpha, \alpha) + 5(\alpha, \alpha)^2) \in \mathbb{Z}.
$$

KORK ERKER ADAM ADA

Figure Taking $\alpha = \beta$ **we obtain** $(\alpha, \alpha) \in \mathbb{Z}$.

Figure 1 Then easily $(\alpha, \beta) \in \mathbb{Z}$ for arbitrary $\alpha, \beta \in \Lambda^{\#}$