Lattices and spherical designs.

Gabriele Nebe

Lehrstuhl D für Mathematik

ヘロト 人間 とくほとくほとう

3

Lattice sphere packings.

Lattices.

- ▶ $B = (B_1, ..., B_n)$ basis of Euclidean space $(\mathbb{R}^n, (,))$.
- $L = \{\sum_{i=1}^{n} a_i B_i \mid a_i \in \mathbb{Z}\}$ lattice.
- $\min(L) := \min\{(\ell, \ell) \mid 0 \neq \ell \in L\}$ minimum of L.
- ► For $a := \sqrt{\min(L)}/2$ the associated lattice sphere packing is $\mathcal{P}(L) := \bigcup_{\ell \in L} B_a(\ell)$.
- Main goal in lattice theory: Find dense lattices.
 Classify all densest lattices in a given dimension.
 Classify densest lattices in certain families of lattices.

Theorem.

The densest lattices are known up to dimension 8 and in dimension 24.

n	1	2	3	4	5	6	7	8	24
L	\mathbb{A}_1	\mathbb{A}_2	\mathbb{A}_3	\mathbb{D}_4	\mathbb{D}_5	\mathbb{E}_6	\mathbb{E}_7	\mathbb{E}_8	Λ_{24}
extreme	1	1	1	2	3	6	30	2408	

Voronoi's characterization.

- The space of similarity classes of n-dimensional lattices is a compact Riemannian manifold.
- ► There are only finitely many similarity classes of locally densest lattices: extreme lattice (n = 8, 2408 extreme lattices)
- ► Voronoi gave a characterization of extreme lattices by the geometry of the minimal vectors Min(L) := {ℓ ∈ L | (ℓ, ℓ) = min(L)}.
- L is perfect if $\{\pi_x := x^{tr}x \mid x \in Min(L)\} = \mathbb{R}^{n \times n}_{sym}$.
- L is eutactic if there are $\lambda_x > 0$ such that $I_n = \sum_{x \in Min(L)} \lambda_x \pi_x$.

• L is strongly eutactic if all λ_x can be chosen to be equal.

Theorem (Voronoi, 1908)

L is extreme, if and only if L is perfect and eutactic.

Strongly perfect lattices.

Definition (B. Venkov)

A lattice *L* is called strongly perfect if Min(L) is a spherical 5-design, so if for all $p \in \mathbb{R}[x_1, \dots, x_n]_{deg \leq 5}$

$$\frac{1}{|\operatorname{Min}(L)|} \sum_{x \in \operatorname{Min}(L)} p(x) = \int_{S} p(t) dt$$

where S is the sphere containing Min(L).

Equivalent are the following.

- X := Min(L) is a 5-design.
- X := Min(L) is a 4-design.
- $\sum_{x \in X} f(x) = 0$ for all harmonic polynomials $f \in \mathbb{R}[x_1, \dots, x_n]$ of degree 2 and 4.

(harmonic means homogeneous and $\Delta(f) = \sum \frac{d^2f}{dx_i^2} = 0$).

Continued.

Equivalent are the following.

- X := Min(L) is a 5-design.
- X := Min(L) is a 4-design.
- $\sum_{x \in X} f(x) = 0$ for all harmonic polynomials $f \in \mathbb{R}[x_1, \dots, x_n]$ of degree 2 and 4.
- ▶ There is some $c \in \mathbb{R}$ such that $\sum_{x \in X} (x, \alpha)^4 = c(\alpha, \alpha)^2$ for all $\alpha \in \mathbb{R}^n$.

$$(D4) \qquad \sum_{x \in X} (x, \alpha)^4 = \frac{3|X|m^2}{n(n+2)} (\alpha, \alpha)^2$$

$$(D2) \qquad \sum_{x \in X} (x, \alpha)^2 = \frac{|X|m}{n} (\alpha, \alpha)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for all $\alpha \in \mathbb{R}^n$ where $m = \min(L)$.

Strongly perfect lattices are extreme.

Theorem.

Let L be a strongly perfect lattice. Then L is strongly eutactic and perfect and hence extreme.

Proof. (a) The 2-design property is equivalent to L being strongly eutactic, because by (D2)

$$\sum_{x \in X} \underbrace{(x, \alpha)^2}_{\alpha \pi_x \alpha^{tr}} = \frac{m|X|}{n} \underbrace{(\alpha, \alpha)}_{\alpha I_n \alpha^{tr}}$$

(日) (日) (日) (日) (日) (日) (日)

for all $\alpha \in \mathbb{R}^n$ where X = Min(L), m = min(L).

Strongly perfect lattices are extreme.

Theorem.

Let L be a strongly perfect lattice. Then L is strongly eutactic and perfect and hence extreme.

Proof. (b) 4-design implies perfection: $A \in \mathbb{R}^{n \times n}_{sym}$ defines $p_A : \alpha \mapsto \alpha A \alpha^{tr}$.

$$U := \langle \pi_x \mid x \in X \rangle = \mathbb{R}^{n \times n}_{\text{sym}} \Leftrightarrow U^{\perp} = \{0\}.$$

So assume that $A \in U^{\perp}$, so

$$0 = \operatorname{trace}(x^{tr}xA) = \operatorname{trace}(xAx^{tr}) = xAx^{tr} = p_A(x) \text{ for all } x \in X$$

By the design property we then have

$$\int_{S} p_{A}^{2}(t)dt = \frac{1}{|X|} \sum_{x \in X} p_{A}(x)^{2} = 0$$

and hence A = 0.

Strongly perfect lattices.

Theorem.

Let L be strongly perfect. Then $\min(L)\min(L^{\#}) \ge (n+2)/3$. Here $L^{\#} = \{x \in \mathbb{R}^n \mid (x, L) \subset \mathbb{Z}\}$ is the dual lattice.

Proof. Let $\alpha \in Min(L^{\#})$. Then

$$(D4) - (D2) = \sum_{x \in X} \underbrace{(x, \alpha)^2 ((x, \alpha)^2 - 1)}_{\geq 0} = \frac{|X|m}{n} (\alpha, \alpha) \underbrace{(\frac{3m(\alpha, \alpha)}{n+2} - 1)}_{\Rightarrow \geq 0}$$

Remember
$$\begin{array}{rcl} (D4) & \sum_{x \in X} (x, \alpha)^4 &= \frac{3|X|m^2}{n(n+2)} (\alpha, \alpha)^2 \\ (D2) & \sum_{x \in X} (x, \alpha)^2 &= \frac{|X|m}{n} (\alpha, \alpha) \end{array}$$

◆□> < □> < □> < □> < □> < □</p>

Dual strongly perfect lattices.

Definition

Let L be a lattice and $L^{\#}$ its dual lattice.

- For a ∈ ℝ_{≥0} the layer L_a := {ℓ ∈ L | (ℓ, ℓ) = a} is a finite subset of a sphere.
- ► *L* is called universally strongly perfect if all layers of *L* form spherical 4-designs.
- ► *L* is called dual strongly perfect if *L* and *L*[#] are both strongly perfect.

Theorem.

universally strongly perfect \Rightarrow dual strongly perfect \Rightarrow strongly perfect

Proof. Theta series of L $\theta_L := \sum_a |L_a|q^a$ $(q = \exp(\pi i z), \Im(z) > 0)$ or more general $\theta_{L,p} := \sum_a \sum_{x \in L_a} p(x)q^a$ for $p \in Harm_d$ are modular forms.

L universally strongly perfect, iff $\theta_{L,p} = 0$ for all $p \in Harm_d$ (d = 2, 4). $\theta_{L^{\#},p}$ can be computed from $\theta_{L,p}$ by Poisson-summation.

No harmonic invariants.

Theorem.

Let $G = \operatorname{Aut}(L)$ and assume that $\langle (\alpha, \alpha)^d \rangle = \operatorname{Inv}_{2d}(G)$ for all $d = 1, \ldots, t$. Then all *G*-orbits and all non-empty layers of *L* are spherical 2*t*-designs.

Corollary.

- If ℝⁿ is an irreducible ℝG-module then Inv₂(G) = ⟨(α, α)⟩ and L is strongly eutactic.
- In particular all irreducible root-lattices are strongly eutactic.
- If additionally Inv₄(G) = ⟨(α, α)²⟩, then L is universally strongly perfect.

(日) (日) (日) (日) (日) (日) (日)

The Thompson-Smith lattice of dimension 248.

- ▶ Let *G* =Th denote the sporadic simple Thompson group.
- ► Then *G* has a 248-dimensional rational representation $\rho: G \rightarrow O(248, \mathbb{Q}).$
- Since G is finite, $\rho(G)$ fixes a lattice $L \leq \mathbb{Q}^{248}$.
- Modular representation theory tells us that for all primes p the \mathbb{F}_pG -module L/pL is simple.
- Therefore $L = L^{\#}$ and L is even
- otherwise $L_0 := \{v \in L \mid (v, v) \in 2\mathbb{Z}\} < L$ of index 2.
- Inv_{2d}(G) = ⟨(α, α)^d⟩ for d = 1, 2, 3. So all layers of L form spherical 6-designs and in particular L is strongly perfect.
- ▶ $\min(L)\min(L^{\#}) = \min(L)^2 \ge \frac{248+2}{3} > 83.3$, so $\min(L) \ge 10$.

• There is a $v \in L$ with (v, v) = 12, so $\min(L) \in \{10, 12\}$.

Classification of strongly perfect lattices.

Theorem.

- ► All strongly perfect lattices of dimension ≤ 12 are known (Nebe/Venkov).
- All integral strongly perfect lattices of minimum 2 and 3 are known (Venkov).
- There is a unique dual strongly perfect lattice of dimension 14 (Nebe/Venkov).
- Elisabeth Nossek classifies the dual strongly perfect lattices in dimension 13,15,... in her thesis.
- ► All integral lattices L of minimum ≤ 5 such that Min(L) is a 6-design are known (Martinet).
- ► All lattices L of dimension ≤ 24 such that Min(L) is a 6-design are known (Nebe/Venkov).

Extremal lattices are extreme.

Theorem.

Let *L* be an even unimodular lattice of dimension n = 24a + 8b with b = 0, 1, 2 and $\min(L) = 2a + 2$ (extremal lattice).

- All nonempty L_j are (11 4b)-designs.
- If b = 0 or b = 1 then L is strongly perfect and hence extreme.
- All extremal even unimodular lattices of dimension 32 are extreme.

Proof:

- Let $L = L^{\#} \subset \mathbb{R}^n$ be an even unimodular lattice.
- Choose $p \in \mathbb{R}[x_1, \ldots, x_n]$, $\deg(p) = t > 0$, $\Delta(p) = 0$.
- ► Then $\theta_{L,p} := \sum_{\ell \in L} p(\ell) q^{(\ell,\ell)} = \sum_{j=1}^{\infty} (\sum_{\ell \in L_j} p(\ell)) q^j$ is a cusp form of weight n/2 + t.
- If $2m = \min(L)$ then $\theta_{L,p}$ is divisible by Δ^m of weight 12m
- ▶ If n/2 + t < 12m, then $\theta_{L,p} = 0$ and all layers of *L* are spherical *t*-designs.

Strongly perfect lattices: Conclusion.

- Boris Venkov's idea combines spherical designs and lattices
- Allows to apply other mathematical theories to prove that certain lattices are locally densest such as:
- Representation theory of finite groups.
- Theory of modular forms.
- Combinatorics:
- Explicit knowledge of minimal vectors (Barnes-Wall lattices)
- Allows to use combinatorial means to classify strongly perfect lattices of given dimension.
- Classification of dual strongly perfect lattices: Many more tools. (Finite list of abelian groups L[#]/L, finite list of possible genera of lattices, use modular forms or explicit enumeration of genera.)

Spherical designs.

Definition

A finite set $\emptyset \neq X \subset S := S^{n-1}(\mathbb{R}) := \{x \in \mathbb{R}^n \mid (x, x) = 1\}$ is called spherical *t*-design if for all $p \in \mathbb{R}[x_1, \dots, x_n]_{\leq t}$

$$\frac{1}{|X|} \sum_{x \in X} p(x) = \int_S p(t) dt.$$

Clear: X is a *t*-design \Rightarrow X is a *t* - 1-design. Disjoint unions of *t*-designs are *t*-designs. Fact: *t* designs exist for arbitrary *t* and *n*.

Goal.

Find designs of minimal cardinality, so called tight designs.

$$|X| \geq \binom{n+e-1}{e} + \binom{n+e-2}{e-1} \text{ resp. } 2\binom{n+e-1}{e}$$

for t = 2e resp. t = 2e + 1.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Classification of tight spherical *t*-designs.

Remark

Tight *t*-designs in S^{n-1} with $n \ge 3$ only exist for $t \le 5$ or t = 7, 11. They are classified completely for $t \in \{1, 2, 3, 11\}$.

Examples

$$n = 2$$
: regular (t+1)-gon
 $t = 1$: $|X| = 2\binom{n-1}{0} = 2$, $X = \{x, -x\}$
 $t = 2$: $|X| = n + 1$, simplex.
 $t = 3$: $|X| = 2\binom{n}{1} = 2n$, $X = \{\pm e_1, \dots, \pm e_n\} = Min(\mathbb{Z}^n)$.
 $t = 5$: $n = 3$, $|X| = 12$, icosahedron.
 $t = 7$: $n = 8$ and $X = Min(\mathbb{E}_8)$, $|X| = 240$.
 $t = 7$: $n = 23$ and $X = Min(O_{23})$, $|X| = 4600$.
 $t = 11$: $n = 24$ and $X = Min(\Lambda_{24})$, $|X| = 196560$. unique.

Tight spherical designs.

Tight spherical designs, known facts.

- Only exist for $n \le 2$ or t = 1, 2, 3, 4, 5, 7, 11.
- Classified for $n \leq 2$ or t = 1, 2, 3, 11.
- Open for t = 4, 5, 7.
- ▶ $\{Y \subset S^{n-1} \mid Y \text{ tight 5-design}\} \leftrightarrow \{X \subset S^{n-2} \mid X \text{ tight 4-design}\}$
- $t \text{ odd} \Rightarrow \text{any tight } t \text{-design is antipodal: } X = -X.$
- t = 4, |X| = n(n+3)/2, then either n = 2 or n = (2m+1)² 3 = 6, 22, but not 46, 78, open for n ≥ 118.
- ▶ t = 5, |X| = n(n + 1), then either n = 3 or $n = (2m + 1)^2 2 = 7$, 23, but not 47, 79, open for $n \ge 119$.
- ▶ t = 7, |X| = n(n+1)(n+2)/3, then $n = 3d^2 4 = 8$, 23, but not 44, 71, open for $n \ge 104$.
- ► $t \ge 8$, then t = 11, n = 24, |X| = 196560, $X = Min(\Lambda_{24})$ (unique)

Tight spherical designs.

Open problem.

Classify tight spherical *t*-designs for t = 5 and t = 7.

Conjecture.

- There are only three tight 5-designs in dimension ≥ 3 :
 - The icosahedron in dimension 3,
 - $Min(E_7^{\#})$ in dimension 7,
 - $Min(M_{23}^{\#})$ in dimension 23.
- There are only two tight 7-designs in dimension ≥ 3 :

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Min(E₈) in dimension 8
- $Min(O_{23})$ in dimension 23.

Tight designs and lattices

Theorem.

Let X be a tight 5-design. Then

- X = -X, $n = d^2 2$ with d = 2m + 1 odd.
- Assume that (x, x) = d for all $x \in X$. Then
- $(x,y) \in \{\pm d, \pm 1\}$ for all $x, y \in X$.
- ▶ Let X be a tight 7-design. Then
 - X = -X, $n = 3d^2 4$. Assume that (x, x) = d for all $x \in X$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• $(x, y) \in \{\pm d, \pm 1, 0\}$ for all $x, y \in X$.

Corollary.

 $L_X := \langle X \rangle_{\mathbb{Z}}$ is an integral lattice with $\min(L_X) \leq d$.

Tight 5-designs and lattices.

 $n = d^2 - 2$, d = 2m + 1, $X \subset S^{n-1}(d)$ tight 5-design. $\Lambda := \langle X \rangle$. Existence for m = 1, 2, non-existence for m = 3, 4.

Theorem

- ► Λ is an odd lattice.
- $\operatorname{Min}(\Lambda) = X$ if $m \leq 9$.

•
$$(x,y) \in \{\pm d, \pm 1\}$$
 for $x, y \in X$ (odd)

• $\Lambda_0 := \{ v \in \Lambda \mid (v, v) \text{ even } \} = \langle x - y \mid x, y \in X \rangle$

•
$$\frac{1}{2}\Lambda_0 \subset \Lambda^{\#}$$
 so $\Gamma := \frac{1}{\sqrt{2}}\Lambda_0$ is integral

- ▶ $|\Gamma^{\#}/\Gamma| = 2$ if $m + 1 \in 2\mathbb{Z} 8\mathbb{Z}$, and m(m + 1) odd square free.
- ▶ $|\Gamma^{\#}/\Gamma| = 6$ if $m \in 2\mathbb{Z} 8\mathbb{Z}$, and m(m+1) odd square free.
- ▶ If $m \in 2\mathbb{Z} 8\mathbb{Z}$, and m(m+1) odd square free then $m \equiv -1 \pmod{3}$.
- $\blacktriangleright m \neq 4, 6, 10, 12, 22, 28, 30, 34, 42, 46, \dots$

Tight 7-designs and lattices.

 $n = 3d^2 - 4$, $X \subset S^{n-1}(d)$ tight 7-design. $\Lambda := \langle X \rangle$. Existence for d = 2, 3, non-existence for d = 4, 5.

Theorem

- Λ is an integral lattice.
- Λ is even, if d is even.
- $\blacktriangleright \ \Lambda = \Lambda^\# \text{ if }$
 - $\nu_p(d^3 d) < 3$ for all primes $p \ge 5$ and
 - $\nu_3(d^3 d) < 4$ and
 - ► $\nu_2(d) < 5.$

• If
$$\Lambda = \Lambda^{\#}$$
 then $d \notin 4\mathbb{Z}$.

 $\bullet \ d \neq 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, \dots$

For d = 6 we know

- $\Lambda \subset \mathbb{R}^{104}$ even unimodular of minimum 6.
- $X = \operatorname{Min}(\Lambda), \ \Lambda_8 = \emptyset.$
- This determines θ_{Λ} .
- All layers of Λ are spherical 7-designs.

(日) (日) (日) (日) (日) (日) (日)

Equivalent conditions for designs

Equivalent are:

- ► X spherical t-design
- $\sum_{x \in X} f(x) = 0$ for all $f \in Harm_d$ and all $1 \le d \le t$.
- ▶ Let $\{e, o\} = \{t, t 1\}$ with e even and o odd. Then there is $c \in \mathbb{R}$ such that for all $\alpha \in \mathbb{R}^n$

$$\sum_{x \in X} (x, \alpha)^e = c(\alpha, \alpha)^{e/2}, \ \sum_{x \in X} (x, \alpha)^o = 0.$$

$$c = c(e, n, |X|) = \frac{1 \cdot 3 \cdot 5 \cdots (e-1)|X|}{n(n+2) \cdots (n+e-2)}$$

$$\begin{split} t &= 7, \, (x,x) = d, \, n = 3d^2 - 4, \, X = Y \stackrel{.}{\cup} -Y, \, |Y| = n(n+1)(n+2)/6, \\ \Lambda &:= \langle X \rangle \\ \bullet & \sum_{x \in Y} (x,\alpha)^6 = \frac{5}{2} d(d^2 - 1)(\alpha,\alpha)^3 \\ \bullet & \sum_{x \in Y} (x,\alpha)^4 = \frac{3}{2} d^2 (d^2 - 1)(\alpha,\alpha)^2 \\ \bullet & \sum_{x \in Y} (x,\alpha)^2 = \frac{1}{2} (3d^2 - 2)(d^2 - 1)d(\alpha,\alpha) \\ \bullet & \text{For } \alpha \in \Lambda^\# \text{ then rhs all integers.} \end{split}$$

Tight 7 design
$$X = Y \stackrel{.}{\cup} -Y$$
, $\Lambda = \langle X \rangle$, $\Gamma = \Lambda^{\#}$

Theorem.

 $\Lambda=\Lambda^\#$ if

- ▶ $\nu_p(d^3 d) < 3$ for all primes $p \ge 5$ and
- ► $\nu_3(d^3 d) < 4$ and
- ▶ $\nu_2(d) < 5.$
- Proof. Know that Λ is integral.
- So it is enough to prove that $\Lambda^{\#}$ is integral.

$$\blacktriangleright \ \alpha,\beta \in \Lambda^{\#} \Rightarrow (x,\beta)(x,\alpha)((x,\alpha)^2-1)((x,\alpha)^2-4) \in 120\mathbb{Z} \text{ so}(x,\alpha)^2 = 0$$

$$\frac{d^3-d}{240}(\alpha,\beta)(12d^2-8-15d(\alpha,\alpha)+5(\alpha,\alpha)^2)\in\mathbb{Z}.$$

• Taking $\alpha = \beta$ we obtain $(\alpha, \alpha) \in \mathbb{Z}$.

• Then easily $(\alpha, \beta) \in \mathbb{Z}$ for arbitrary $\alpha, \beta \in \Lambda^{\#}$