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Index Calculus of IF;
DLP: a,b € Fjst.a™ = b=> Find n

Factor base
Bo=4{-1,2,3,5,7...,pn}

Collect more than |Bg| + 1 number of a't) €<
Bg >

%

Solve around |Bg| x |Bg| lin. alg. mod. |F|



Example
p=179, a =23, b=a?3 =111, By = {2,3}
Collect relations

(ol 120 = 96 = 2331

{ a2 bl =12=12231

| a3 b7 =27 =2033
Solving lin. alg. mod p—1
(1 20|5 1

2 16(2 1

| 3 17|0 3

[ 3 60|15 3]

6 48| 6 3

|3 17| 0 3

(0 43|15 O |

3 31| 6 0

|3 17,0 3|

0 86 |30 O

15 155‘30 0]

15 69]0 0] x —1/69 mod 178
23 -1|0 0|

So we have ¢23.p~1 =1 mod 178



Large prime variations of IF;;
Factor base and Large prime
B = {—1,2,3,5,7...,pN}, BgCB

Large primes: B\Bg
Collect enough number of a'b) €< B >

— eliminate the terms of B\ B
— Solve around |Bg| x |Bg| lin. alg. mod. |F}|



Index calc. of group 1
G (Additive) Group, Solve DLP i.e.
a,be Gs.t. n-a=b=>Find n e Z/|G|Z

Factor base U Large prime B(C G)(subset)
Factor base Bg(C B) (subset)
Large prime B\Bg

Further, we will assume
Assumption of Decomposition
AN fix

For g € G
g=49g1+g>2+...+gnTorg B
O(1) probability

O(1) cost (seeking g;'s)



Index calc. of group 2

Normal Index Calc.

The case B = By

Collect more than |B| 4+ 1 number of
i-a+j5-beE<C B>

— Solve around |B| x |B| lin. alg. mod. |G|

Note the cost of lin.alg. is dominant.

Large Prime method

Collect enough number of

1-a+j5-beE< B>

— Eliminate Large primes and

— Solve around |Bg| X |Bg| lin. alg. mod. |G|



Index calc. of Jacobian (over general finite
field)
C'/Fq curve genus g, G = Jace(Fy), solve DLP

1) Gaudry
B = By = C(Fq) = {P — oo|P € C(FFg)}
=> it works well. Cost O(g2T¢).

2) Revalance (Gaudry,Harley)

Take Bg C B(subset, only size is optimized).
Cost O(q(4g—2)/(29‘|‘1)+€)_

3) Using Large prime Elimination (Thériault,
Nagao,Gaudry, Thomé, Diem) Cost O(q{29—2)/9+t¢),



Index calc. of Jac. over extension field 1
C/Fsq curve genus g, G = Jacc(Fpn), solve DLP

1) Gaudry

The case of Elliptic curve(g = 1)
E/Fmn elliptic curve, G = E(Iﬁ‘qn),
B = {(z,y) € EFp)|z € Fy)
Index calc. works well(using Semaev’s formula).

Semaev’s formula

Given (z,y) € E(Fyn), 21, ...,xn € Fpyn

3(X, X1,., Xn) € Fpn[X,Xq,..., Xp], degop =

on—1 st

o(x,21,..2m) =0 <
(z,y)+(x1,y1)+...+(zn,yn) = 0 fOor some
(@i, y;) € E(Fpn)



Index calc. of Jac. over extension field 2
Recall

G = E(Fp) B={(x,y) € EFy)|e € Fy}

Given (z,y) € G,

Condition 3(x;,y;) € B(i=1,..,n)

(z,y) + (21,91) + .. + (Zn, yn) = 0 induces

o(x, X1,..,Xn) = 0 hassome solutions (X1, ..., Xpn) =
(21, ...,xn) € A"(Fp).

Prob.of (z,y) being written by this form =
1/nl(=0(1)).



Index calc.of Jac. over extension field 3
Remark that =z € F,» being the x-coor. of a
fixed pt. of E(Fn).

Fix [aq, .., an] base of Fyn /Fy.

¢(x, X1,..,Xn) € Fpn[Xq, ..., Xp] is written by
¢(x, X1,.., Xn) = D1 ;i (X1, .., Xn)

for some ¢, ;(X1,..., Xn) € Fg[X1, ..., Xn]

o(x, X1,..,Xn) = 0 has some solutions (X1,,,Xn) =
(21,...,xn) € A"(Fq) is equiv. to

solving eg.system

¢zi(X1,..., Xn) = 0, /I, (1=1,...,n)

Find z;

— Solve degree 2”—1, n variables,n equations
equations system over [,

n,g = 1 small, ¢ — oo, Cost O(q{2n9=2)/ng+te)



Improvement of the algorithm 1(Notation)
C/F, Hyperelliptic curve genus g(odd degree)
ch(Fy) # 2, co unique point at infinfity,

G = Jacc(Fp), solve DLP

B ={(z,y) —oo|(z,y) € C(Fypn),x € Fy} or

B = {(z,y)|(z,y) € C(Fp),z € Fg}

(Note. In Ell. cur. case,the same as Gaudry’s)
idea: Semaev’s formula — function field

it also works well in Hyperell case.

Dg:Fixed reduced divisor
Do = (¢1(x), po(x)) mumford rep.
=Q1+Qx+...+Qy— (g)x

Definition Dy decomposed

Do+ Pir+Po+ ...+ Prg— (ng)oo ~ 0 for some
P, eB

Pob. of Dg being decomposed = 1/(ng)!

{P;} being called decomposed factor



Improvement of the algorithm 2

The case g =3, n=2 part 1

Explain the construction of Eqg. sys. of above
case

HEC C’:y2=f(x)/IFq2, f(z) =z’ 4+ ...+ ag
Fix reduced divisor Dg € Ja,c(C/IFqQ)

1)Mumford rep. Dg = (¢1(x), po(x)) S.t.
¢1, 92 € F 2[z], g1monic, 3 > degpy > ¢o,
¢35 — f(x) =0 mod ¢

2)Representation using points

3Q1, Q2,Q3 € C(IFy) s.t.
Dop=Q1+ Qo+ Q3 — 30

D:divisor, L(D) := {h € C(F;2)|(h) + D > 0}
Theorem(Riemann Roch)L(D)vector space
degD >2g—1 — dimL(D) =degD —g+1



Improvement of the algorithm 3

The case g =3, n =2 part 2

Here, reduded divisor Dg is fixed

Put D = 600 — Dg = 900 — (Q1 + Q2 + Q3).

Then {¢1(z), p1(2)z, (y — ¢2(2)), (v — ¢2(x))z}
is a base of L(D).

When Dg is decomposed, the points {P;} of
the form

Do+Pi+..4Ps—600 = Q14...4+Q3+Pi+...4+Pg—900 ~ 0

are the zeros of some elements of L(D)

Note. h € L(D),ordech = 9
— h has term of (y — ¢o(x))x

Put h(z,y) 1= (Ao+A12)P1(2)+(Bo+1)(y—p2(2)).

where Ag, A1, Bg are the parameter moving ]Fqg.

Seeking cross pts of h(z,y) = 0 on C.



Improvement of the algorithm 4
The case g =3, n=2 part 3
Recall C:y2 =2’ 4+ ...+ ag

(Ao + Ar1z)p1(x) — (Bo + 1)<152(513).

h(z,y) =0 —=y = Bo+x

Put

p(z) := (z+Bo)?(z"+..)—((Ao+A12) 1 (2)—(Bo+1) p2(2))?.
Roots of p(z) = 0 are x-cor. of Qq,...,Q3, Py,..., Pg

Put g(z) := p(z)/¢1(x) = 2° + Cs2° + ... + C.

Then
1)Roots of g(xz) = 0 are x-cor. of Py, ..., Pg
2)Considering parameters as variable,
Co,..,Cg € ]qu[Ao,Al, Bpl, deg C; = 2
3)Dg decomposed — Vx(P;) € Fy,

— Jag, a1,bg € Fqgs.t.C’i(ao, a1,bg) € Fy.
Further, we seek the condition
C;(ag,a1,bp) € Fg (1=0,....5)



Improvement of the algorithm 5
The case g =3, n=2 part 4
Fix [1,a] base of Iﬁ‘qg/IFq

Put new parameters A0,0, AO,17 A1,07 A1,1> BO,O» BO,l
moves in [y s.t.

Ag = Ap,0 + Ag,1

A1 = A10+ A1 1@

Bg = Bop,0 + Bo,1«

T hen Ci are considerd in Fqg [A0,0,AO,l, ceey BO,l]

Put C; ; € Fq[Ao.0, 40,1, A1,0,41.1,B0,0, Bo,1] by
C’i — C’i,O + Ci,la (7’ — 07 17 ceey 57.] — 07 1)

Then deg(; g =deg (1 =2
The cond. values C; € F;,+=0,1,..,5
— C;1 =0fori=0,1,..,5.



Improvement of the algorithm 6

The case g =3, n=2 part 5

1)The cond. C;(ag,..) =0 € F; reduces to
Edgs. sys. {C;1 =0/F¢t=0,1,..,5}
(degree 2, 6 vars, 6 €qQs)

Let ¥ = (ago, @01,41,0,211,b00,b11) € A°(F,) be
a sol. of Eqgs. sys..

Put ¢; := C; o(¥) and g(z) is written by

g(x) = 2% + (3551:5 + ...+ co

2)Then 2° 4+ c5z® + ... 4+ ¢o factors completely
in Fq[z] is equiv to x(Py),...,x(Pg) € Fy

Note. Dominant part is 1) and the computa-
tion of "Seeking decomposed factos’ reduces
to "Solving Egs. Sys.”



Improvement of the algorithm 7(general case)
Recall C/F,» HyperEll. of genus g, Dg € Jac.(F»)fixed
Theorem Let V7, V5, ..., V(nz_n)g be variables

and let Dg be a reduced divisor of C'/F,». Then

there are some degree 2 polynomials

Ci,j c Fq[Vl,VQ, ...,V(nQ (O < 1 < ng —
1,0<j<n-1)

satisfying the following.

—n)gl

The condition that Dg is decomposed is equiv-
alent to the following 1) and 2).

1) The equations system S = {C;; = 0|0 <
i <ng—1,1<j5<n-—1} has some solution
T = (01, Vp2_py,) € A TII(E).

2) Put ¢, = C’i,O(vlv“av(nQ_n)g) for 0 < 1 <
ng—1. Then G(z) = az”g—l—cng_lazng_l—l—...—l—co =
[F,[z] factors completely.

Moreover, if Dg is decomposed, the xz-coordinates
of the decomposed factor are the solution of
G(z) =0



Improvement of the algorithm 7(conclusion)
Seeking decompsed factor

— Solving degree2, (n? — n)g vars, eqgs, equa-
tions system over F, (we assume the cost is in
O(1),since n, g are small and fixed. )

Note. In EIll. cur. case, the cost of comput-
iIng decomposed factor is as same as Gaudry’s
method

Note. Total cost of solving DLP is O(q(zng—z)/”g"'e)



Example We can compute the decomposed
factor in three cases

1) (9,n) =(1,3), 2) (g,n) =(2,2), 3) (9,n) =
(3,2)

Show an example of the case of (g,n) = (3,2)

Let ¢ = 1073741789(prime number),
Fo = Fq[t]/(t? + 746495860 x t + 206240189),

C/Fp 1y =2 +(111912375%t+1046743132)xx46x1+9

and

Dg = (:132—|— 107374178 7xtxx+327245929xt+867501600,

(473621736%t+256126568)x1+145989647+t+687383736) € Jac(C)

(Mumford representation).

We investigate whether nDg : n = 1,2,..3000
are decomposed and find the following 6 de-
compositions.



414Dy ~ (1001437837,752632260%t+700158497)+ (747112084, 656073918+t+400137619)
+(620249588,127943213+t+635474623)+ (614180498, 206297635%t+445250468)
+(515769009,607297126%t+554290493)+ (488549466, 627952783%t+854182612)—600
657Dg ~ (939617127,695261735xt+239531611)4(933351280,935312661+t+961494096)
+(799612924,341923983t+677495100)+ (294787599, 279723229xt+760003067)
+(273118782053704103#t4+577497766)+(153381525,983211238%t+517037777)—600
921Dg ~ (1034634787,400751409%t+829801342)+ (763888873, 757155774+t+829936954)
+(619620874,800641683t4+200272230)+ (603032615, 115219564%t+655011145)
+(436423191,285214454xt+450812747)+ (125198811, 884750621 xt+123305741)—600
1026 Dg ~ (1024020017,267457905xt+41452942)+(794174628,615676821xt+723336407)
+(738567269,433647609+t+128304659)+ (629287731, 465842490%t+789390318)

+(435082408,878213106%t+603353206)+(79621979,479459622xt+672937516)—600



Conclusion

We have proposed an algorithm which checks

whether a reduced divisor is decomposed or

not, and we have computed the decomposed

factors, if it is decomposed. From this algo-

rithm, concrete computations of decomposed

factors are done by computer experiments when

the pairs of the genus of the hyperelliptic curve

and the degree of extension field are (1,3), (2, 2),
and (3,2).
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