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Integer symmetric matrices (ISMs)

These are things like:

 1 0 −2
0 0 3
−2 3 7



(symmetric square matrix, integer entries)

2/1729
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Properties of ISMs

Their characteristic polynomials

• are monic

• have integer coefficients

• have all roots real

To what extent is the converse true?
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roots real.

It is the characteristic polynomial of(
1 1
1 −1

)
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Example 2

Consider the polynomial x2 − 3. Can this be the characteristic

polynomial of an ISM?

det

(
x− a −b
−b x− c

)
= x2 − (a+ c)x+ ac− b2

det

(
x− a −b
−b x+ a

)
= x2 − a2 − b2

We need a2 + b2 = 3.
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Example 2 (continued)

Consider the polynomial x2−3. Can this be the min. poly. of an

ISM?

Yes!


−1 1 1 0

1 1 0 1
1 0 1 −1
0 1 −1 −1


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Consider the polynomial x3 − 4x− 1.
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Example 3

Consider the polynomial x3 − 4x− 1.

This is not the characteristic polynomial of an ISM. (Why?)

But it is the min. poly. of the following 6× 6 ISM:



1 0 1 1 1 0
0 1 1 −1 0 1
1 1 −1 0 0 0
1 −1 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0





Theorem of Estes and Guralnick (1993)

Let f(x) be a monic, separable polynomial with integer coeffi-

cients, degree n, and with all roots real.

If n ≤ 4, then f is the min. poly. of a 2n× 2n ISM.
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Question 1 of Estes and Guralnick (1993)

Let f(x) be a monic, separable polynomial with integer coeffi-

cients, degree n, and with all roots real.

Is f always the min. poly. of an ISM?

They conjectured that the answer is ‘yes’.
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Answer: Dobrowolski (2008)

• No!

• Indeed there exist infinitely many f (monic, separable, integer

coefficients, and with all roots real) for which f is not the

min. poly. of any ISM.

• He shows that if f (degree n) is the min. poly. of an ISM,

then the discriminant of f is at least nn. For large, highly

composite m, the discriminant of the min. poly. of 2 cos(π/m)

is too small.
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Let’s change the question

What is the smallest n such that there is a monic, separable

polynomial f(x) of degree n, with integer coefficients and with all

roots real, and with f not the min. poly. of any integer symmetric

matrix?

• Dobrowolski: 5 ≤ n ≤ 2880

• More precise answer: n ∈ {5,6}



Some degree-6 examples

I claim that the following polyomials are monic, separable, with

all roots real, but do not arise as the min. poly. of any ISMs:

• x6 − x5 − 6x4 + 6x3 + 8x2 − 8x+ 1

• x6 − 7x4 + 14x2 − 7

• x6 − 6x4 + 9x2 − 3



Summary to this point

We don’t fully understand which polynomials arise as character-

istic polynomials of integer symmetric matrices.

We don’t fully understand which polynomials arise as min. polys. of

integer symmetric matrices.
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• For any integer c, and any ε = ±1, the polynomials f(x) and

εdf(εx+ c) will be called equivalent.

• Equivalent polynomials have the same span.

• Any small-span polynomial is equivalent to one with all its

roots in the interval [−2,2.5).
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SMALL-SPAN: WHY 4?

• Suppose that f(x) (monic, integer coefficients, all roots real)

has all its roots in the interval [−2,2]. Then the roots of f(x)

are all of the form 2 cos(2π/m), where m is a natural number.

• I’ll call such a polynomial a cosine polynomial.

• Any small-span polynomial that is not equivalent to a cosine

polynomial is especially interesting.
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SMALL-SPAN: HISTORY

• Robinson (1964): up to degree 6; conjectured lists for de-

grees 7 and 8.

• Flamming, Rhin, Wu (2009, unpublished): up to degree 13.

• Capparelli, Del Fra, Sciò (2010): up to degree 14, conjec-

tured lists for degrees 15 and 16.

• Stop press (June 2010): Rhin et al have verified the degree

15 list.



SMALL-SPAN: SUMMARY

degree # classes # non-cosine degree # classes # non-cosine
1 1 0 9 21 19
2 4 1 10 28 15
3 5 3 11 11 10
4 14 10 12 16 9
5 15 14 13 4 4
6 17 13 14 10 9
7 15 15 15 7 6
8 26 21 16 ≥ 9 ≥ 3
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SMALL-SPAN CHARACTERISTIC POLYNOMIALS

We can intersect the previous two (unsolved) problems, and get

an easier problem:

Which small-span polynomials arise as characteristic polynomials

(or minimal polynomials) of ISMs?

There is a natural notion of equivalence.
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SMALL-SPAN CHARACTERISTIC POLYNOMIALS: AN EXAMPLE

y y y y y y

y y y y y y

1 1 1

1 1 1

s s s s s s s s s s

Eigenvalues:

−1.4955. . . , −1.4955. . . , −1, −1, −0.2196. . . , −0.2196. . . ,

1.2196. . . , 1.2196. . . , 2, 2, 2.4955. . . , 2.4955. . . .
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from an (n− 1)-by-(n− 1) small-span ISM.



GROWING

• FACT: For n > 1, any small-span n-by-n ISM can be ‘grown’

from an (n− 1)-by-(n− 1) small-span ISM.

• GROWING ALGORITHM: find all 1-by-1 examples (up to

equivalence), grow to 2-by-2, 3-by-3, etc..



RESULTS: MAXIMAL SMALL-SPAN ISMs UP TO EQUIVALENCE

n # #′ n # #′ n # #′

1 1 6 48 11 15
2 1 7 36 12 17
3 2 8 59 13 15
4 21 9 25 14 16
5 22 10 27 15 17



RESULTS: REMOVING MEMBERS OF 10 FAMILIES

n # #′ n # #′ n # #′

1 1 1 6 48 43 11 15 2
2 1 1 7 36 28 12 17 3
3 2 1 8 59 50 13 15 0
4 21 19 9 25 15 14 16 0
5 22 19 10 27 15 15 17 0



CLASSIFICATION THEOREM

n > 12 # #′

n n+ 2 0



APPLICATION: A QUESTION OF ESTES AND GURALNICK

Computations + a small argument produce lots of small-degree

counterexamples to the conjecture of Estes and Guralnick con-

cerning minimal polynomials of ISMs.
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FUTURE WORK?

• Degree 5?

• Entries from OK for various number fields K? (Hermitian)

• Gary Greaves has completed [K : Q] = 2.

• Two of the three degree-6 polynomials now appear as mini-

mal polynomials.



THANK YOU FOR LISTENING

ω = (1 +
√
−3)/2

y y y y y y

y y y y y y

x6 − 7x4 + 14x2 − 7 x6 − 6x4 + 9x2 − 3

�A
ω

sss
sss
sss
s

s s s s s s s s s s
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