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Integer symmetric matrices (ISMs)

These are things like:
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(symmetric square matrix, integer entries)
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Properties of ISMs

T heir characteristic polynomials

® are monic

e have integer coefficients

e have all roots real

To what extent is the converse true?
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2 — (a + )z + ac — b2

T — a —b
det( _ m_(j)

T — a —b
det( Y :c—l—a)

|
N

R



Example 2

Consider the polynomial r2 — 3. Can this be the characteristic
polynomial of an ISM?7

det(x_a _b> = 22— (a+ )z + ac — b2

—b x—c
det r—a —b — 22 g2 -2
—b x4+ a R

We need a2 + b2 = 3.
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Example 2 (continued)

Consider the polynomial 2 — 3. Can this be the min. poly. of an
ISM?

Yes!

-1 1 1 O
11 0 1
1 0 1 -1
O 1 -1 -1



Example 3

Consider the polynomial z3 — 42 — 1.



Example 3
Consider the polynomial z3 — 4z — 1.
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Example 3
Consider the polynomial 23 — 4z — 1.
This is not the characteristic polynomial of an ISM. (Why?)

But it is the min. poly. of the following 6 x 6 ISM:

(101110\
0 1 1 -101
1 1 -1 000
1 -1 0-100
1 0 0 00O
\0 1 0 000



Theorem of Estes and Guralnick (1993)

Let f(xz) be a monic, separable polynomial with integer coeffi-
cients, degree n, and with all roots real.

If n <4, then f is the min. poly. of a 2n x 2n ISM.
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Question 1 of Estes and Guralnick (1993)

Let f(xz) be a monic, separable polynomial with integer coeffi-
cients, degree n, and with all roots real.

Is f always the min. poly. of an ISM?7

They conjectured that the answer is ‘yes’.
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Answer: Dobrowolski (2008)

e NO!

e Indeed there exist infinitely many f (monic, separable, integer
coefficients, and with all roots real) for which f is not the

min. poly. of any ISM.

e He shows that if f (degree n) is the min. poly. of an ISM,
then the discriminant of f is at least n"™. For large, highly
composite m, the discriminant of the min. poly. of 2 cos(w/m)

iIs too small.
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Let's change the question
What is the smallest n such that there is a monic, separable

polynomial f(x) of degree n, with integer coefficients and with all

roots real, and with f not the min. poly. of any integer symmetric
matrix?

e Dobrowolski: 5 < n < 2880

e More precise answer: n € {5,6}



Some degree-6 examples

I claim that the following polyomials are monic, separable, with
all roots real, but do not arise as the min. poly. of any ISMSs:

° :1:6—:135—6:104—|—6:v3—|—8332—8:13—|—1

° :136—7w4—|—14x2—7

o 2% 624 +4+922 -3



Summary to this point

We don't fully understand which polynomials arise as character-
istic polynomials of integer symmetric matrices.

We don’'t fully understand which polynomials arise as min. polys. of
integer symmetric matrices.
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SMALL-SPAN: EQUIVALENCE

e For any integer ¢, and any € = £+1, the polynomials f(x) and
edf(ex 4 ¢) will be called equivalent.

e Equivalent polynomials have the same span.

e Any small-span polynomial is equivalent to one with all its
roots in the interval [—2,2.5).



SMALL-SPAN: WHY 47

e Suppose that f(z) (monic, integer coefficients, all roots real)
has all its roots in the interval [—-2,2]. Then the roots of f(x)
are all of the form 2 cos(27/m), where m is a natural number.



SMALL-SPAN: WHY 47

e Suppose that f(z) (monic, integer coefficients, all roots real)
has all its roots in the interval [—-2,2]. Then the roots of f(x)
are all of the form 2 cos(27/m), where m is a natural number.

e I'll call such a polynomial a cosine polynomial.



SMALL-SPAN: WHY 47

e Suppose that f(z) (monic, integer coefficients, all roots real)
has all its roots in the interval [—-2,2]. Then the roots of f(x)
are all of the form 2 cos(27/m), where m is a natural number.

e I'll call such a polynomial a cosine polynomial.

e Any small-span polynomial that is not equivalent to a cosine
polynomial is especially interesting.
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SMALL-SPAN: HISTORY

e Robinson (1964): up to degree 6; conjectured lists for de-
grees 7 and 8.

e Flamming, Rhin, Wu (2009, unpublished): up to degree 13.

e Capparelli, Del Fra, Scid (2010): up to degree 14, conjec-
tured lists for degrees 15 and 16.

e Stop press (June 2010): Rhin et al have verified the degree
15 list.



SMALL-SPAN: SUMMARY

degree | # classes | 2 non-cosine degree | # classes | 2 non-cosine
1 1 0 ) 21 19
2 4 1 10 28 15
3 5 3 11 11 10
4 14 10 12 16 )
5 15 14 13 4 4
6 17 13 14 10 )
7 15 15 15 V4 6)
3 26 21 16 > 9 >3




SMALL-SPAN CHARACTERISTIC POLYNOMIALS

We can intersect the previous two (unsolved) problems, and get
an easier problem:
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SMALL-SPAN CHARACTERISTIC POLYNOMIALS

We can intersect the previous two (unsolved) problems, and get
an easier problem:

Which small-span polynomials arise as characteristic polynomials
(or minimal polynomials) of ISMs?

There is a natural notion of equivalence.
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SMALL-SPAN CHARACTERISTIC POLYNOMIALS: AN EXAMPLE

ol ° ol ° ol °

o ‘1 @cccececcee ‘1 ® ’1
Eigenvalues:
—1.4955..., —1.4955..., -1, -1, —-0.2196..., —0.2196...,

1.2196..., 1.2196..., 2, 2, 2.4955. .., 2.4955. ..
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e FACT: Forn > 1, any small-span n-by-n ISM can be ‘grown’
from an (n — 1)-by-(n — 1) small-span ISM.



GROWING

e FACT: Forn > 1, any small-span n-by-n ISM can be ‘grown’
from an (n — 1)-by-(n — 1) small-span ISM.

¢ GROWING ALGORITHM: find all 1-by-1 examples (up to
equivalence), grow to 2-by-2, 3-by-3, etc..



RESULTS: MAXIMAL SMALL-SPAN ISMs UP TO EQUIVALENCE

n|# |# n |#|H# n |[#|#
11 6 |48 11|15
211 7 |36 12 (17
312 8 |59 13|15
4|21 O |25 14 |16
51|22 10| 27 15|17




RESULTS: REMOVING MEMBERS OF 10 FAMILIES

n|# |# n |#|H# n |[#|#
11 1 6 |48 |43 11 (15| 2
211 1 7 | 36|28 121173
312 |1 8 |59 |50 13|/15|0
4121119 9 | 25|15 1416 |0
5122119 10|27 | 15 15117 |0




CLASSIFICATION THEOREM

n>12‘# ‘#’
n ‘n—I—Q‘O



APPLICATION: A QUESTION OF ESTES AND GURALNICK

Computations + a small argument produce lots of small-degree
counterexamples to the conjecture of Estes and Guralnick con-
cerning minimal polynomials of ISMs.
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FUTURE WORK?

Degree 57

Entries from Oy for various number fields K7 (Hermitian)

Gary Greaves has completed [K : Q] = 2.

Two of the three degree-6 polynomials now appear as mini-
mal polynomials.



THANK YOU FOR LISTENING

w=(14++-3)/2
® ® ® ® ®
o @ o @cccccccce ®




QUESTIONS?
QUESTIONS?



