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An isogeny cycle is a sequence of isogenies
E1 —>E2—>E3—>...—>En_1 —>E1

@ SEA algorithm (Couveignes and Morain)

@ Hilbert polynomial computation (Couveignes and Henocq,
Broker, Charles and Lauter, Belding et al., Sutherland)

Question: How can we build isogeny cycles?

Answer: Kohel’s work on the computation of the endomorphism
ring (isogeny volcanoes) and pairings.
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The endomorphism ring of an ordinary elliptic curve

Let E be an ordinary elliptic curve defined over Fg.
Examples: multiplication by ¢ € Z
P—(P

7 (x,y) — (x9,y9). Z[r] € End(E) J

@ End(E) is an order in a quadratic imaginary field K, i.e. a
subring and Z-submodule of the ring of integers Ok

@ Denote by f = [Ok : End(E)] the conductor and by
de = f2dk the discriminant

OK — dK
| f

End(E) + fPdx dr =t —4q = g°dx |
|7

Zlr]  « gPdk
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Isogenies and endomorphism rings

The ¢-isogeny graph has vertices Elli(F4) and edges
¢-isogenies defined over [Fg.

Let ¢ : Ey — E5 be an isogeny of degree /.

Ok Ok Ok
| |
El’ld(E1 ) El’ld(Eg)
¢ ¢ End(E1) = End(Eg)
End E2) End E1)
| | ‘
Z|r] Z[r] Z[r]
descending ascending horizontal
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Isogenies and ¢-volcanoes

Let h be the ¢-adic valuation of the conductor g of Z[x].

Kohel’'s theorem

Connected components of Ell;(IF4) are ¢-volcanoes
of height h (assuming j # 0,1728).
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What is a /-volcano?
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@ Vj (the crater) is regular connected of degree at most 2

@ For i > 0, each vertex in V; has one edge leading to a vertex in
Vi_i
@ For i < h, each vertex in V; has degree ¢ + 1.
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Isogenies and ¢-volcanoes

Let h be the ¢-adic valuation of the conductor g of Z[x].

Kohel’'s theorem

Connected components of Ell;(IF4) are ¢-volcanoes
of height h (assuming j # 0,1728).

Cdy L) Curves on a fixed level have

// P \\ mom // YRR the same endomorphism ring.
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Exploring the volcano (First method)

@ Assume E has ¢ + 1 neighbours. Then
E[{](Fgr) =< P,Q > with r < £.
@ Subgroups of order ¢ are:
<P><Q><P+Q>, ..., <P+(-1)Q>
@ Use classical Vélu’s formulae

O(M(r)(¢ +log q)) with M(r) = rlogrloglogr
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Exploring the volcano (Second method)

@ The modular polynomial ®,(X, Y) € Z[X, Y] is a symmetric
polynomial of degree ¢ + 1 in each variable

@ E and E’ are (-isogenous over Fq < #E(Fq) = #E'(Fq)
and ,(j(E), j(E")) = 0.
@ Roots of &,(X,j(E)) in Fy give curves (-isogenous to E.

O(¢% + M(¢)log q) with M(¢) = ¢log ¢ loglog ¢

@ Use modular polynomials
@ Blind walking
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Descending (Kohel 1996, Fouquet-Morain 2001)

@ Itis easy to detect the floor.
i > @ From a given curve one 1 or at most
two — isogenies.

(W @ No backtracking = gravity is our
friend!

Descent: Construct three paths in parallel.
The first that reaches the floor is descending.

O(h(f? + M(¢) log q))
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Ascending or walking on the crater

(Fouquet-Morain, 2001)

@ Construct descending paths for the
£ 4+ 1 neighbours

@ The curve with the longest path is
either above or at the same level
O(h(£2 + ¢M(¢)log q)

Parallel walk: Construct ¢ + 1 paths in parallel and use
multipoint evaluation to compute ®,( X, j(E))

O(htM(¢)(log ¢ + log q))
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Determining directions on a regular volcano

mz X ez :
; , Miret et al. 2006
AL g Mmoo Determine direction
thanks to the ¢-Sylow
SN group structure
e ”A A A A A

en +n

Our approach
Construct a compass using self-pairings.
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Self-pairings

E[t®)(Fy) ~ Z/(M LKL/ (™,
E[t")(Fqr) ~ Z/0Lx L,/ (™,

The reduced Tate pairing is a bilinear, non-degenerate map

Ty : E[0%] x E(Fqr)/(E(Fq) — pen

—1
fims p(Q + R)) i
pa) o (2
(79 fr ()
efficiently computable with Miller’s algorithm
O(n2log )
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Self-pairings

@ For P, Q € E[¢™] define

1

S(P,Q) = (T (P, Q)T (Q, P))z (Joux, Nguyen 2003)

@ S symmetric = S(P, P) = Ty, (P, P)
@ If S# 1 thereis k > 0 such that

S(-,-): E[™] x E[¢(™] — Lok < fignp surjective

We say P has non-degenerate self-pairing iff Ty» (P, P) is a
primitive £X-th root of unity and degenerate otherwise. J
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How many degenerate self-pairings?

(Joux-Nguyen/l.-Joux)

@ Take P and Q generating E[("]
S(aP + bQ, aP + bQ) = S(P, P)¥ S(P, Q)2*S(Q, Q)**
@ Consider the polynomial

Pem(a,b) = log(S(P,P))a® +1og(S(Q, Q))b?
+2log(S(P, Q))ab mod ¢k~

subgroups of order 7 in
— E[e™]/E[¢r1]
with degenerate pairing

homogenous roots
of IPE’gng

at most two subgroups with degenerate self-pairing
( modulo E[¢™~1))
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Our pairing compass

Let P be a point of order ¢™ on E and ¢ the isogeny of kernel
<P,

@ If P has non-degenerate self-pairing then the isogeny is
descending.

@ If P has degenerate self-pairing, then the isogeny is
ascending or horizontal.

Corollary

If Py, £ has two distinct roots, then E is on the crater of its
¢-volcano.
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Ascending and walking on the crater with a compass

Regular volcanoes
(>3

Pe e # 0

@ Compute P and Q two generators of E[¢™2](F ).

@ Compute Pg yn,, compute its roots and find a point aP + bQ
with degenerate pairing.

@ Compute vertical/horizontal isogenies via Vélu’s formulae

O(rM(r)(1 +log q))

Sorina lonica and Antoine Joux 19/22



Walking on irregular volcanoes

PE[”z = 0

/v Ny /v Ny
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(second) stability level i ,.
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In theory: Move to some finite extension F ges such that the
polynomial Pg 4 corresponding to E/FF s is not zero.
In practice: Use Kohel/Fouquet-Morain algorithms until the
stability level is reached and our algorithms in the regular part
of the volcano.

Luckily, most volcanoes are regular!
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Walking on the volcano: Cost per step

Descending path | Ascending/Horizontal
Kohel, Fouquet-Morain | h(¢2 + M(¢)logq) | h(¢2 + ¢ M(¢)log q)
Parallel evaluation - ht M(¢)(log ¢ + log q)
Regular volcanoes Regular volcanoes
Best case {+logq {+logq
Worst case r =~ ¢/2 rM(r)(1 +log q) rM(r)(1 +log q)
Irregular volcanoes
(worst case) No improvement

implementation under MAGMA 2.15-15 on an Intel Core 2 Duo

2.66 GHz
¢ q (-torsion length of crater time
100003 61900742833426666852501391 over gy 22 curves 154 sec.
1009 953202937996763 over Fgr with r = 84 19 curves 20 min.
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If you plan to go hiking this summer, you'd better get a compass!

Questions?

Sorina lonica and Antoine Joux 22/22



