Pairing the volcano

Sorina Ionica and Antoine Joux

Université de Versailles Saint-Quentin-en-Yvelines PR/SM, 45 avenue des États-Unis, F-78035, Versailles CEDEX, France

DGA

ANTS, Nancy, June 19th, 2010

Sorina Ionica and Antoine Joux

An isogeny cycle is a sequence of isogenies

$$E_1 \longrightarrow E_2 \longrightarrow E_3 \longrightarrow \ldots \longrightarrow E_{n-1} \longrightarrow E_1$$

- SEA algorithm (Couveignes and Morain)
- Hilbert polynomial computation (Couveignes and Henocq, Broker, Charles and Lauter, Belding et al., Sutherland)

Question: How can we build isogeny cycles?

Answer: Kohel's work on the computation of the endomorphism ring (isogeny volcanoes) and pairings.

The endomorphism ring of an ordinary elliptic curve

Let *E* be an ordinary elliptic curve defined over \mathbb{F}_q .

Examples: multiplication by $\ell \in \mathbb{Z}$ $P \rightarrow \ell P$

$$\pi:(\mathbf{X},\mathbf{Y})\to(\mathbf{X}^{\mathbf{q}},\mathbf{Y}^{\mathbf{q}}).$$

$$\mathbb{Z}[\pi] \subseteq \mathit{End}(E)$$

- End(*E*) is an order in a quadratic imaginary field *K*, i.e. a subring and ℤ-submodule of the ring of integers *O_K*
- Denote by $f = [\mathcal{O}_K : \text{End}(E)]$ the conductor and by $d_E = f^2 d_K$ the discriminant

$$\begin{array}{rcl} \mathcal{O}_{K} & \leftarrow d_{K} \\ \mid f & & \\ \mathrm{End}(E) & \leftarrow f^{2}d_{K} \\ \mid \frac{g}{f} & & \\ \mathbb{Z}[\pi] & \leftarrow g^{2}d_{K} \end{array}$$

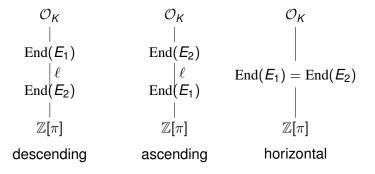
$$d_{\pi}=t^2-4q=g^2d_K$$

< ロ > < 同 > < 回 >

Isogenies and endomorphism rings

The ℓ -isogeny graph has vertices $Ell_t(\mathbb{F}_q)$ and edges ℓ -isogenies defined over \mathbb{F}_q .

Let $\phi: E_1 \to E_2$ be an isogeny of degree ℓ .



ヘロト 人間 とくほとく ほとう

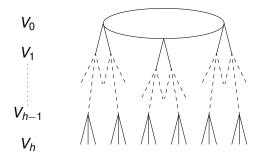
Let *h* be the ℓ -adic valuation of the conductor *g* of $\mathbb{Z}[\pi]$.

Kohel's theorem

Connected components of $Ell_t(\mathbb{F}_q)$ are ℓ -volcanoes of height *h* (assuming $j \neq 0, 1728$).

ヘロト ヘ帰 ト ヘヨト ヘヨト

What is a *l*-volcano?



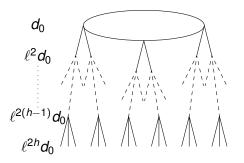
- V₀ (the *crater*) is regular connected of degree at most 2
- For *i* > 0, each vertex in *V_i* has one edge leading to a vertex in *V_{i-1}*

• For i < h, each vertex in V_i has degree $\ell + 1$.

Let *h* be the ℓ -adic valuation of the conductor *g* of $\mathbb{Z}[\pi]$.

Kohel's theorem

Connected components of $Ell_t(\mathbb{F}_q)$ are ℓ -volcanoes of height *h* (assuming $j \neq 0, 1728$).



Curves on a fixed level have the same endomorphism ring.

Exploring the volcano (First method)

- Assume *E* has $\ell + 1$ neighbours. Then $E[\ell](\mathbb{F}_{q^r}) = \langle P, Q \rangle$ with $r < \ell$.
- Subgroups of order ℓ are:
 < P >, < Q >, < P + Q >, ..., < P + (ℓ − 1)Q >
- Use classical Vélu's formulae

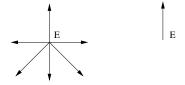
 $O(M(r)(\ell + \log q))$ with $M(r) = r \log r \log \log r$

イロト イ押ト イヨト イヨトー

Exploring the volcano (Second method)

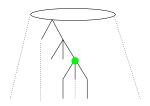
- The modular polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ is a symmetric polynomial of degree $\ell + 1$ in each variable
- *E* and *E'* are ℓ -isogenous over $\mathbb{F}_q \Leftrightarrow \#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$ and $\Phi_{\ell}(j(E), j(E')) = 0$.
- Roots of $\Phi_{\ell}(X, j(E))$ in \mathbb{F}_q give curves ℓ -isogenous to E. $O(\ell^2 + M(\ell) \log q)$ with $M(\ell) = \ell \log \ell \log \log \ell$

- Use modular polynomials
- Blind walking



< ロ > < 同 > < 三 >

Descending (Kohel 1996, Fouquet-Morain 2001)

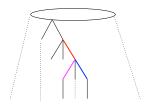


- It is easy to detect the floor.
- From a given curve one ↑ or at most two → isogenies.
- No backtracking ⇒ gravity is our friend!

Descent: Construct three paths in parallel. The first that reaches the floor is descending.

 $O(h(\ell^2 + M(\ell)\log q))$

Descending (Kohel 1996, Fouquet-Morain 2001)

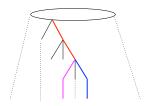


- It is easy to detect the floor.
- From a given curve one ↑ or at most two → isogenies.
- No backtracking ⇒ gravity is our friend!

Descent: Construct three paths in parallel. The first that reaches the floor is descending.

 $O(h(\ell^2 + M(\ell)\log q))$

Descending (Kohel 1996, Fouquet-Morain 2001)

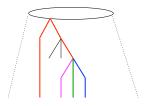


- It is easy to detect the floor.
- From a given curve one ↑ or at most two → isogenies.
- No backtracking ⇒ gravity is our friend!

Descent: Construct three paths in parallel. The first that reaches the floor is descending.

 $O(h(\ell^2 + M(\ell)\log q))$

Ascending or walking on the crater (Fouquet-Morain, 2001)

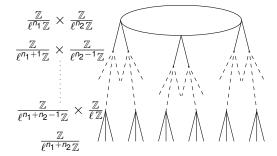


- Construct descending paths for the $\ell + 1$ neighbours
- The curve with the longest path is either above or at the same level $O(h(\ell^3 + \ell M(\ell) \log q))$

Parallel walk: Construct $\ell + 1$ paths in parallel and use multipoint evaluation to compute $\Phi_{\ell}(X, j(E))$

 $\mathcal{O}(h\ell M(\ell)(\log \ell + \log q))$

Determining directions on a regular volcano



Miret et al. 2006

Determine direction thanks to the *l*-Sylow group structure

くロト (得) (目) (日)

Our approach

Construct a compass using self-pairings.

$$\begin{split} & E[\ell^{\infty}](\mathbb{F}_{q^{r}}) \simeq \mathbb{Z}/\ell^{n_{1}}\mathbb{Z} \times \mathbb{Z}/\ell^{n_{2}}\mathbb{Z} \\ & \text{with } n_{1} \geq n_{2} \\ & E[\ell^{n_{2}}](\mathbb{F}_{q^{r}}) \simeq \mathbb{Z}/\ell^{n_{2}}\mathbb{Z} \times \mathbb{Z}/\ell^{n_{2}}\mathbb{Z} \\ \end{split}$$

The reduced Tate pairing is a bilinear, non-degenerate map

$$egin{aligned} & T_{\ell^{n_2}}: E[\ell^{n_2}] imes E(\mathbb{F}_{q^r}) / \ell^{n_2} E(\mathbb{F}_{q^r}) & o & \mu_{\ell^{n_2}} \ & (P,Q) & o & \left(rac{f_{\ell^{n_2},P}(Q+R)}{f_{\ell^{n_2},P}(R)}
ight)^{rac{q-1}{\ell^{n_2}}} \end{aligned}$$

efficiently computable with Miller's algorithm $O(n_2 \log \ell)$

ヘロト ヘ戸ト ヘヨト ヘヨト

• For $P, Q \in E[\ell^{n_2}]$ define

 $S(P,Q) = (T_{\ell^{n_2}}(P,Q)T_{\ell^{n_2}}(Q,P))^{\frac{1}{2}}$ (Joux, Nguyen 2003)

- S symmetric \Rightarrow S(P, P) = $T_{\ell^{n_2}}(P, P)$
- If $S \neq 1$ there is k > 0 such that

 $S(\cdot, \cdot) : E[\ell^{n_2}] \times E[\ell^{n_2}] \to \mu_{\ell^k} \subseteq \mu_{\ell^{n_2}}$ surjective

We say *P* has non-degenerate self-pairing iff $T_{\ell^{n_2}}(P, P)$ is a primitive ℓ^k -th root of unity and degenerate otherwise.

イロト 不得 とく ヨト く ヨトー

How many degenerate self-pairings? (Joux-Nguyen/I.-Joux)

• Take *P* and *Q* generating $E[\ell^{n_2}]$

$$S(aP+bQ,aP+bQ)=S(P,P)^{a^2}S(P,Q)^{2ab}S(Q,Q)^{b^2}$$

Consider the polynomial

$$\mathcal{P}_{E,\ell^{n_2}}(a,b) = \log(S(P,P))a^2 + \log(S(Q,Q))b^2 + 2\log(S(P,Q))ab \mod \ell^{k-1}$$

at most two subgroups with degenerate self-pairing (modulo $E[\ell^{n_2-1}]$)

Sorina Ionica and Antoine Joux

Let *P* be a point of order ℓ^{n_2} on *E* and ϕ the isogeny of kernel $< \ell^{n_2-1}P >$.

Theorem

- If *P* has non-degenerate self-pairing then the isogeny is descending.
- If *P* has degenerate self-pairing, then the isogeny is ascending or horizontal.

Corollary

If $\mathcal{P}_{\ell^{n_2},E}$ has two distinct roots, then *E* is on the crater of its ℓ -volcano.

イロト 不得 トイヨト イヨト

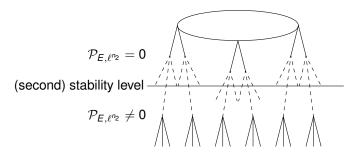
Ascending and walking on the crater with a compass

- Compute *P* and *Q* two generators of $E[\ell^{n_2}](\mathbb{F}_{q^r})$.
- Compute \$\mathcal{P}_{E,l^{p_2}}\$, compute its roots and find a point \$aP + bQ\$ with degenerate pairing.
- Compute vertical/horizontal isogenies via Vélu's formulae

$O(rM(r)(1+\log q))$

< □ > < 同 > < 三

Walking on irregular volcanoes



In theory: Move to some finite extension $\mathbb{F}_{q^{\ell^s}}$ such that the polynomial $\mathcal{P}_{E,\ell^{n_2}}$ corresponding to $E/\mathbb{F}_{q^{\ell^s}}$ is not zero. In practice: Use Kohel/Fouquet-Morain algorithms until the stability level is reached and our algorithms in the regular part of the volcano.

Luckily, most volcanoes are regular!

くロト (得) (目) (日)

	Descending path	Ascending/Horizontal		
Kohel, Fouquet-Morain	$h(\ell^2 + M(\ell) \log q)$	$h(\ell^3 + \ell M(\ell) \log q)$		
Parallel evaluation	-	$h\ell M(\ell)(\log \ell + \log q)$		
Regular volcanoes	Regular volcanoes			
Best case	$\ell + \log q$	$\ell + \log q$		
Worst case $r \approx \ell/2$	$rM(r)(1 + \log q)$	$r M(r)(1 + \log q)$		
Irregular volcanoes				
(worst case)	No improvement			

implementation under MAGMA 2.15-15 on an Intel Core 2 Duo 2.66 GHz

l	q	<i>ℓ</i> -torsion	length of crater	time
100003	61900742833426666852501391	over \mathbb{F}_q	22 curves	154 sec.
1009	953202937996763	over \mathbb{F}_{q^r} with $r = 84$	19 curves	20 min.

イロト イボト イヨト イヨト

If you plan to go hiking this summer, you'd better get a compass!

Questions?

Sorina Ionica and Antoine Joux

イロト イボト イヨト イヨト