Congruent Number Theta Coefficients to 10¹²

William Hart, Gonzalo Tornaria, Mark Watkins

July 15, 2010

William Hart, Gonzalo Tornaria, Mark Watkins Congruent Number Theta Coefficients to 10¹²

물 제 문 제 문 제 ...

▶ **Definition (Congruent Number)** An integer *n* is *congruent* if it is the area of a right triangle with rational length sides.

프 🖌 🛪 프 🛌

- Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides.
- ► E.g. 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28,

(同)((注))(注)(注)

- ▶ **Definition (Congruent Number)** An integer *n* is *congruent* if it is the area of a right triangle with rational length sides.
- ▶ E.g. 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28,
- ▶ 5 is the area of the 20/3, 3/2, 41/6 triangle.

米部 米油 米油 米油 とう

- Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides.
- ▶ E.g. 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28,
- ▶ 5 is the area of the 20/3, 3/2, 41/6 triangle.
- Equivalently n is congruent if there exist rational x, y, z, w such that

$$x^2 + ny^2 = z^2$$
 and $x^2 - ny^2 = w^2$.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

- ▶ **Definition (Congruent Number)** An integer *n* is *congruent* if it is the area of a right triangle with rational length sides.
- ▶ E.g. 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28,
- ▶ 5 is the area of the 20/3, 3/2, 41/6 triangle.
- Equivalently n is congruent if there exist rational x, y, z, w such that

$$x^2 + ny^2 = z^2$$
 and $x^2 - ny^2 = w^2$.

• Congruent *n* correspond to points (u^2, v) on the elliptic curve $E_n : y^2 = x^3 - n^2 x$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Theorem (Tunnell)

Let n be an odd squarefree positive integer. Set

$$\begin{aligned} \mathsf{a}(n) &= \#\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + 8z^2 = n\} \\ &- 2 \#\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + 32z^2 = n\}, \end{aligned}$$

$$b(n) = \#\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 4y^2 + 8z^2 = n\} \\ -2 \#\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 4y^2 + 32z^2 = n\}.$$

- (注) (注) (

A ₽

3

Theorem (Tunnell)

Let n be an odd squarefree positive integer. Set

$$\begin{aligned} \mathsf{a}(n) &= \#\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + 8z^2 = n\} \\ &- 2 \#\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + 32z^2 = n\}, \end{aligned}$$

$$b(n) = \#\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 4y^2 + 8z^2 = n\} -2 \#\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 4y^2 + 32z^2 = n\}.$$

If n is congruent then a(n) = 0. If 2n is congruent then b(n) = 0.

個 と く ヨ と く ヨ と …

Theorem (Tunnell)

Let n be an odd squarefree positive integer. Set

$$\begin{aligned} \mathsf{a}(n) &= \#\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + 8z^2 = n\} \\ &- 2 \#\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + 32z^2 = n\}, \end{aligned}$$

$$b(n) = \#\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 4y^2 + 8z^2 = n\} \\ -2 \#\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + 4y^2 + 32z^2 = n\}.$$

If *n* is congruent then a(n) = 0. If 2n is congruent then b(n) = 0. Moreover, if the weak BSD conjecture is true for the curve $y^2 = x^3 - n^2x$ then the converses also hold: a(n) = 0 implies *n* is congruent and b(n) = 0 implies 2n is congruent.

白 と く ヨ と く ヨ と …

Theta functions

• Define
$$\theta_t = \sum_{m=-\infty}^{\infty} q^{tm^2}$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Theta functions

• Define
$$\theta_t = \sum_{m=-\infty}^{\infty} q^{tm^2}$$
.
• $\theta_8(\theta_1 - \theta_4) \times (\theta_8 - 2\theta_{32}) = \sum_{n \equiv 1 \pmod{8}} a(n) q^n$,
 $(\theta_2 - \theta_8)(\theta_1 - \theta_4) \times (\theta_8 - 2\theta_{32}) = \sum_{n \equiv 3 \pmod{8}} a(n) q^n$,
 $\theta_{16}(\theta_1 - \theta_4) \times (\theta_8 - 2\theta_{32}) = \sum_{n \equiv 1 \pmod{8}} b(n) q^n$,
 $(\theta_4 - \theta_{16})(\theta_1 - \theta_4) \times (\theta_8 - 2\theta_{32}) = \sum_{n \equiv 5 \pmod{8}} b(n) q^n$.

(ロ) (回) (目) (目) (日) (の)

Definition (Convolution) Given two vectors of length *n*

$$A = [a_0, a_1, \ldots, a_{n-1}]$$

and

$$B = [b_0, b_1, \ldots, b_{n-1}]$$

the cyclic convolution of A, B is

$$C = [c_0, c_1, \ldots, c_{n-1}]$$

where

$$c_k = \sum_{i+j \equiv k \pmod{n}} a_i b_j$$

副 とう きょう うちょう 日本

Given polynomials of length n,

$$f_1(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$
$$f_2(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}$$

computing the product polynomial

$$f_1 f_2(x) = c_0 + c_1 x + \cdots + c_{2n-2} x^{2n-2}$$

is linear or acyclic convolution.

$$c_k = \sum_{i+j=k} a_i b_j.$$

ヨ▶ ▲ ヨ ▶ ヨ つへの

► Cyclic convolution is polynomial multiplication mod xⁿ - 1.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

- ► Cyclic convolution is polynomial multiplication mod xⁿ − 1.
- Linear convolution (polynomial multiplication) can be performed by zero padding to length 2n

$$A = [a_0, a_1, \ldots, a_{n-1}, 0, 0, \ldots, 0]$$

$$B = [b_0, b_1, \ldots, b_{n-1}, 0, 0, \ldots, 0]$$

then perform cyclic convolution (polynomial multiplication modulo $x^{2n} - 1$).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

The negacyclic convolution is polynomial multiplication modulo xⁿ + 1.

□ > < E > < E > E - つくぐ

- The negacyclic convolution is polynomial multiplication modulo xⁿ + 1.
- ► Can be computed by performing the transformation $x \mapsto \zeta_n y$ with ζ_n a primitive 2*n*-th root of unity $(\zeta_n^n = -1)$.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

- The negacyclic convolution is polynomial multiplication modulo xⁿ + 1.
- ► Can be computed by performing the transformation $x \mapsto \zeta_n y$ with ζ_n a primitive 2*n*-th root of unity $(\zeta_n^n = -1)$.
- ► Now perform multiplication modulo yⁿ 1 using cyclic convolution.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

► To compute multiplication modulo x²ⁿ - 1, compute it modulo xⁿ - 1 using the cyclic convolution and compute it modulo xⁿ + 1 using the negacyclic convolution, then recombine using CRT

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

- ► To compute multiplication modulo x²ⁿ 1, compute it modulo xⁿ - 1 using the cyclic convolution and compute it modulo xⁿ + 1 using the negacyclic convolution, then recombine using CRT
- The CRT step is an addition, a subtraction and division by 2 (called rescaling)

- ► To compute multiplication modulo x²ⁿ 1, compute it modulo xⁿ - 1 using the cyclic convolution and compute it modulo xⁿ + 1 using the negacyclic convolution, then recombine using CRT
- The CRT step is an addition, a subtraction and division by 2 (called rescaling)
- ► If n = 2^kd is divisible by a power of 2, can iterate the FFT trick a further k times

(本語) (本語) (本語) (語)

Reduction mod xⁿ − 1 and xⁿ + 1 combined with the negacyclic transformation x → ζ_ny is called a Decimation In Frequency (DIF) FFT butterfly

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

- Reduction mod xⁿ − 1 and xⁿ + 1 combined with the negacyclic transformation x → ζ_ny is called a Decimation In Frequency (DIF) FFT butterfly
- $A = [s_0, s_1, \dots, s_{n-1}, t_0, t_1, \dots, t_{n-1}]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

- Reduction mod xⁿ − 1 and xⁿ + 1 combined with the negacyclic transformation x → ζ_ny is called a Decimation In Frequency (DIF) FFT butterfly
- $A = [s_0, s_1, \ldots, s_{n-1}, t_0, t_1, \ldots, t_{n-1}]$
- DIF_FFT_butterfly(A) =

$$[s_0 + t_0, s_1 + t_1, \dots, s_{n-1} + t_{n-1},$$

$$s_0 - t_0, \zeta_n(s_1 - t_1), \dots, \zeta_n^{n-1}(s_{n-1} - t_{n-1})]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

- Reduction mod xⁿ − 1 and xⁿ + 1 combined with the negacyclic transformation x → ζ_ny is called a Decimation In Frequency (DIF) FFT butterfly
- $A = [s_0, s_1, \ldots, s_{n-1}, t_0, t_1, \ldots, t_{n-1}]$

DIF_FFT_butterfly(A) =

$$[s_0 + t_0, s_1 + t_1, \dots, s_{n-1} + t_{n-1},$$

$$s_0 - t_0, \zeta_n(s_1 - t_1), \dots, \zeta_n^{n-1}(s_{n-1} - t_{n-1})]$$

DIF FFT applies a DIF butterfly then squares the root of unity ζ_n and recurses first on the left half, then on the right half

(ロ) (同) (目) (日) (日) (の)

► Reversing the negacyclic transformation y → ζ_n⁻¹x followed by CRT recombination (without rescaling) is called an inverse FFT (IFFT) butterfly

回 と く ヨ と く ヨ と

3

- ► Reversing the negacyclic transformation y → ζ_n⁻¹x followed by CRT recombination (without rescaling) is called an inverse FFT (IFFT) butterfly
- $A = [s_0, s_1, \ldots, s_{n-1}, t_0, t_1, \ldots, t_{n-1}]$

▲冊▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- ► Reversing the negacyclic transformation y → ζ_n⁻¹x followed by CRT recombination (without rescaling) is called an inverse FFT (IFFT) butterfly
- $A = [s_0, s_1, \ldots, s_{n-1}, t_0, t_1, \ldots, t_{n-1}]$

DIF_IFFT_butterfly(A) =

$$[s_0 + t_0, s_1 + \zeta_n^{-1} t_1, \dots, s_{n-1} + \zeta_n^{1-n} t_{n-1},$$

$$s_0 - t_0, s_1 - \zeta_n^{-1} t_1, \dots, s_{n-1} - \zeta_n^{1-n} t_{n-1}]$$

□→ ★ 国 → ★ 国 → □ 国

- ► Reversing the negacyclic transformation y → ζ_n⁻¹x followed by CRT recombination (without rescaling) is called an inverse FFT (IFFT) butterfly
- $A = [s_0, s_1, \ldots, s_{n-1}, t_0, t_1, \ldots, t_{n-1}]$

DIF_IFFT_butterfly(A) =

$$[s_0 + t_0, s_1 + \zeta_n^{-1} t_1, \dots, s_{n-1} + \zeta_n^{1-n} t_{n-1},$$

$$s_0 - t_0, s_1 - \zeta_n^{-1} t_1, \dots, s_{n-1} - \zeta_n^{1-n} t_{n-1}]$$

 DIF IFFT recurses first on the left half, then on the right half, then applies a DIF IFFT butterfly

回 と く ヨ と く ヨ と

3

Compute k levels of FFT butterflies

- (注) (注) (

- Compute k levels of FFT butterflies
- Perform multiplications mod x^d 1, called "pointwise multiplications"

向下 イヨト イヨト

- Compute k levels of FFT butterflies
- Perform multiplications mod x^d 1, called "pointwise multiplications"
- Perform k levels of IFFT butterflies

向下 イヨト イヨト

- Compute k levels of FFT butterflies
- Perform multiplications mod x^d 1, called "pointwise multiplications"
- Perform k levels of IFFT butterflies
- Rescale by 2^k

向下 イヨト イヨト

- Compute k levels of FFT butterflies
- Perform multiplications mod x^d 1, called "pointwise multiplications"
- Perform k levels of IFFT butterflies
- Rescale by 2^k
- If n = 2^k FFT convolution can be performed in time O(n log n) coefficient operations

向下 イヨト イヨト

▶ Break f(x) in R = Z/pZ[x] into pieces of length 2^{k-1} and zero pad each to length 2^k

□ > < E > < E > E - のへで

- ▶ Break f(x) in R = Z/pZ[x] into pieces of length 2^{k-1} and zero pad each to length 2^k
- Consider these to be coefficients of a polynomial

□ > < E > < E > _ E

- ▶ Break f(x) in R = Z/pZ[x] into pieces of length 2^{k-1} and zero pad each to length 2^k
- Consider these to be coefficients of a polynomial
- ► Think of these "coefficients" as being in the ring $S = R/(x^{2^k} + 1)$

- ▶ Break f(x) in R = Z/pZ[x] into pieces of length 2^{k-1} and zero pad each to length 2^k
- Consider these to be coefficients of a polynomial
- ► Think of these "coefficients" as being in the ring $S = R/(x^{2^k} + 1)$
- Perform an FFT over the ring S

・ 「「・ ・ 」 ・ ・ 」 正

- ▶ Break f(x) in R = Z/pZ[x] into pieces of length 2^{k-1} and zero pad each to length 2^k
- Consider these to be coefficients of a polynomial
- ► Think of these "coefficients" as being in the ring $S = R/(x^{2^k} + 1)$
- Perform an FFT over the ring S
- Note x is a 2^{k+1} -th root of unity

伺下 イヨト イヨト

- ▶ Break f(x) in R = Z/pZ[x] into pieces of length 2^{k-1} and zero pad each to length 2^k
- Consider these to be coefficients of a polynomial
- ► Think of these "coefficients" as being in the ring $S = R/(x^{2^k} + 1)$
- Perform an FFT over the ring S
- Note x is a 2^{k+1}-th root of unity
- Can use the negacyclic transformation to do pointwise multiplications in S, or algorithm of your choice

・ 同 ト ・ ヨ ト ・ ヨ ト

 The DIF FFT is fairly cache friendly as the working set quickly becomes localised

回 と く ヨ と く ヨ と

- The DIF FFT is fairly cache friendly as the working set quickly becomes localised
- The Matrix Fourier Algorithm improves cache locality

★ E ► ★ E ►

- The DIF FFT is fairly cache friendly as the working set quickly becomes localised
- The Matrix Fourier Algorithm improves cache locality

• Write
$$y = x^{2^{n_1}}$$
 and let

$$f(x) = f_1(y) + xf_2(y) + x^2f_3(y) + \dots + x^{2^{n_1}-1}f_{2^{n_1}-1}(y)$$

with each f_i of length 2^{n_2}

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- The DIF FFT is fairly cache friendly as the working set quickly becomes localised
- > The Matrix Fourier Algorithm improves cache locality

• Write
$$y = x^{2^{n_1}}$$
 and let

$$f(x) = f_1(y) + xf_2(y) + x^2f_3(y) + \dots + x^{2^{n_1}-1}f_{2^{n_1}-1}(y)$$

with each f_i of length 2^{n_2}

Can be thought of as:

回 と く ヨ と く ヨ と …

- The DIF FFT is fairly cache friendly as the working set quickly becomes localised
- The Matrix Fourier Algorithm improves cache locality
- Write $y = x^{2^{n_1}}$ and let

$$f(x) = f_1(y) + xf_2(y) + x^2f_3(y) + \dots + x^{2^{n_1}-1}f_{2^{n_1}-1}(y)$$

with each f_i of length 2^{n_2}

Can be thought of as:
 (i) do 2ⁿ¹ FFT's of length 2ⁿ² (reduce the coeffs of the f_i's mod y - ζⁱ)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- The DIF FFT is fairly cache friendly as the working set quickly becomes localised
- The Matrix Fourier Algorithm improves cache locality
- Write $y = x^{2^{n_1}}$ and let

$$f(x) = f_1(y) + xf_2(y) + x^2f_3(y) + \dots + x^{2^{n_1}-1}f_{2^{n_1}-1}(y)$$

with each f_i of length 2^{n_2}

Can be thought of as:

 (i) do 2ⁿ¹ FFT's of length 2ⁿ² (reduce the coeffs of the f_i's mod y - ζⁱ)
 (ii) twist by powers of ζ (reduce the x^j's mod the appropriate x - ζⁱ's)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- The DIF FFT is fairly cache friendly as the working set quickly becomes localised
- > The Matrix Fourier Algorithm improves cache locality
- Write $y = x^{2^{n_1}}$ and let

$$f(x) = f_1(y) + xf_2(y) + x^2f_3(y) + \dots + x^{2^{n_1}-1}f_{2^{n_1}-1}(y)$$

with each f_i of length 2^{n_2}

Can be thought of as:

 (i) do 2ⁿ¹ FFT's of length 2ⁿ² (reduce the coeffs of the f_i's mod y - ζⁱ)
 (ii) twist by powers of ζ (reduce the x^j's mod the appropriate x - ζⁱ's)
 (iii) do 2ⁿ² FFT's of length 2ⁿ¹ (reduce mod each x - ζⁱ)

・ 同 ト ・ ヨ ト ・ ヨ ト

 Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm

御 と く ヨ と く ヨ と … ヨ

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete

(< Ξ) < Ξ)</p>

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

토 (토)

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

(i) bundle blocks of coefficients using Kronecker Segmentation into large integer coefficients

医下 不至下。

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

(i) bundle blocks of coefficients using Kronecker Segmentation into large integer coefficients

(ii) Reduce large coefficients modulo many small primes

A B M A B M

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

(i) bundle blocks of coefficients using Kronecker Segmentation into large integer coefficients

- (ii) Reduce large coefficients modulo many small primes
- (iii) Perform power series multiplications over $\mathbb{Z}/p\mathbb{Z}$ in-core, performing truncation in-core

向下 イヨト イヨト

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

(i) bundle blocks of coefficients using Kronecker Segmentation into large integer coefficients

- (ii) Reduce large coefficients modulo many small primes
- (iii) Perform power series multiplications over $\mathbb{Z}/p\mathbb{Z}$ in-core,

performing truncation in-core

(iv) Recombine using CRT

向下 イヨト イヨト

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

(i) bundle blocks of coefficients using Kronecker Segmentation into large integer coefficients

- (ii) Reduce large coefficients modulo many small primes
- (iii) Perform power series multiplications over $\mathbb{Z}/p\mathbb{Z}$ in-core,

performing truncation in-core

(iv) Recombine using CRT

(v) Recover small coefficients from large product coefficients

回 と く ヨ と く ヨ と …

- Can do length 2ⁿ² and 2ⁿ¹ FFT's in memory and keep rest of data on disk using Matrix Fourier Algorithm
- Problem: power series truncation can only be done after all FFT's complete
- Solution:

(i) bundle blocks of coefficients using Kronecker Segmentation into large integer coefficients

- (ii) Reduce large coefficients modulo many small primes
- (iii) Perform power series multiplications over $\mathbb{Z}/p\mathbb{Z}$ in-core, performing truncation in-core

(iv) Recombine using CRT

(v) Recover small coefficients from large product coefficients

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Lose log n factor in complexity (due to CRT), but gain factor of 2 in I/O and disk space In 2009 we computed 10¹² terms of the congruent number theta function by multiplying power series

물에 귀절에 다

- In 2009 we computed 10¹² terms of the congruent number theta function by multiplying power series
- ► Used David Harvey's zn_poly (or FLINT) for the polynomial multiplication over Z/pZ

白 ト イヨト イヨト

- In 2009 we computed 10¹² terms of the congruent number theta function by multiplying power series
- ► Used David Harvey's zn_poly (or FLINT) for the polynomial multiplication over Z/pZ
- Wrote code for Kronecker segmentation, modular reduction, CRT, transposes, etc

- In 2009 we computed 10¹² terms of the congruent number theta function by multiplying power series
- ► Used David Harvey's zn_poly (or FLINT) for the polynomial multiplication over Z/pZ
- Wrote code for Kronecker segmentation, modular reduction, CRT, transposes, etc
- Used OpenMP for parallelism (16 cores)

- In 2009 we computed 10¹² terms of the congruent number theta function by multiplying power series
- Used David Harvey's zn_poly (or FLINT) for the polynomial multiplication over Z/pZ
- Wrote code for Kronecker segmentation, modular reduction, CRT, transposes, etc
- Used OpenMP for parallelism (16 cores)
- Used mmap kernel service for disk I/O

- In 2009 we computed 10¹² terms of the congruent number theta function by multiplying power series
- Used David Harvey's zn_poly (or FLINT) for the polynomial multiplication over Z/pZ
- Wrote code for Kronecker segmentation, modular reduction, CRT, transposes, etc
- Used OpenMP for parallelism (16 cores)
- Used mmap kernel service for disk I/O
- Code now part of FLINT (thetaproduct.c)

109		10 ¹⁰		10 ¹¹	
3801661	21	L768969) 1	42778019	
2×10^{11}		3×10^{11}	1	$4 imes 10^{11}$	
127475330	1	115249740		107930081	1
 $5 imes 10^{11}$		6×10^{1}	1	$7 imes 10^{11}$	7
102774355	5	988172		95656907	1

$8 imes 10^{11}$	$9 imes 10^{11}$	10 ¹²
93030373	90748990	88803354

Table 1 : Congruent numbers in the 1 (mod 8) class.

◆□ → ◆□ → ◆ 目 → ◆ 目 → ○ へ ⊙

109	10 ¹⁰	10 ¹¹			
2921535	17019170	112979066			
2×10^{11}	3 × 10 ¹¹	4×10^{11}			
101436853					
$5 imes10^{11}$	6×10^{11}	$7 imes10^{11}$			
82196846	79106503	76626341			
8×10^{11}	9×10^{11}	1012			
74546400	72781203	71239101			

Table 2 : Congruent numbers in the 3 (mod 8) class.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

109	10 ¹⁰	1011		
2110645	12294626	81759844		
2×10^{11}	3×10^{11}	$4 imes 10^{11}$		
73445274	66579936	62455317		
$5 imes 10^{11}$	$6 imes 10^{11}$	$7 imes10^{11}$		
59536672	57282587	55504389		
11	11	10		
$8 imes 10^{11}$	$9 imes10^{11}$	10 ¹²		
53993974	52728711	51619397		

Table 3 : Congruent numbers in the 2 (mod 16) class.

→ 御 → → 注 → → 注 注

109	10 ¹⁰	1011	
1842072	10842882	72556705	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
2×10	3×10	4×10	
65378932	59347550	55720114	
$5 imes 10^{11}$	$6 imes 10^{11}$	$7 imes 10^{11}$	
53152609	51190025	49599296	
$8 imes10^{11}$	$9 imes10^{11}$	10 ¹²	
48268971	47158661	46159584	

Table 4 : Congruent numbers in the 10 (mod 16) class.