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Congruent Numbers

I Definition (Congruent Number) An integer n is congruent
if it is the area of a right triangle with rational length sides.

I E.g. 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, ....

I 5 is the area of the 20/3, 3/2, 41/6 triangle.

I Equivalently n is congruent if there exist rational x , y , z ,w
such that

x2 + ny2 = z2 and x2 − ny2 = w2.

I Congruent n correspond to points (u2, v) on the elliptic curve
En : y2 = x3 − n2x .
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Tunnel’s Criterion

Theorem (Tunnell)

Let n be an odd squarefree positive integer. Set

a(n) = #{(x , y , z) ∈ Z3 | x2 + 2y2 + 8z2 = n}
− 2 #{(x , y , z) ∈ Z3 | x2 + 2y2 + 32z2 = n},

b(n) = #{(x , y , z) ∈ Z3 | x2 + 4y2 + 8z2 = n}
− 2 #{(x , y , z) ∈ Z3 | x2 + 4y2 + 32z2 = n}.

If n is congruent then a(n) = 0. If 2n is congruent then b(n) = 0.
Moreover, if the weak BSD conjecture is true for the curve
y2 = x3 − n2x then the converses also hold: a(n) = 0 implies n is
congruent and b(n) = 0 implies 2n is congruent.
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Theta functions

I Define θt =
∑∞

m=−∞ qtm2
.

I

θ8(θ1 − θ4)× (θ8 − 2θ32) =
∑

n≡1 (mod 8)

a(n) qn,

(θ2 − θ8)(θ1 − θ4)× (θ8 − 2θ32) =
∑

n≡3 (mod 8)

a(n) qn,

θ16(θ1 − θ4)× (θ8 − 2θ32) =
∑

n≡1 (mod 8)

b(n) qn,

(θ4 − θ16)(θ1 − θ4)× (θ8 − 2θ32) =
∑

n≡5 (mod 8)

b(n) qn.
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Cyclic Convolution

Definition (Convolution) Given two vectors of length n

A = [a0, a1, . . . , an−1]

and
B = [b0, b1, . . . , bn−1]

the cyclic convolution of A,B is

C = [c0, c1, . . . , cn−1]

where
ck =

∑
i+j≡k (mod n)

aibj

.
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Polynomial Multiplication

Given polynomials of length n,

f1(x) = a0 + a1x + · · ·+ an−1x
n−1

f2(x) = b0 + b1x + · · ·+ bn−1x
n−1

computing the product polynomial

f1f2(x) = c0 + c1x + · · · c2n−2x
2n−2

is linear or acyclic convolution.

ck =
∑

i+j=k

aibj .
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Convolution

I Cyclic convolution is polynomial multiplication mod xn − 1.

I Linear convolution (polynomial multiplication) can be
performed by zero padding to length 2n

A = [a0, a1, . . . , an−1, 0, 0, . . . , 0]

B = [b0, b1, . . . , bn−1, 0, 0, . . . , 0]

then perform cyclic convolution (polynomial multiplication
modulo x2n − 1).
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Negacyclic Convolution

I The negacyclic convolution is polynomial multiplication
modulo xn + 1.

I Can be computed by performing the transformation x 7→ ζny
with ζn a primitive 2n-th root of unity (ζn

n = −1).

I Now perform multiplication modulo yn − 1 using cyclic
convolution.
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FFT Trick

I To compute multiplication modulo x2n − 1, compute it
modulo xn − 1 using the cyclic convolution and compute it
modulo xn + 1 using the negacyclic convolution, then
recombine using CRT

I The CRT step is an addition, a subtraction and division by 2
(called rescaling)

I If n = 2kd is divisible by a power of 2, can iterate the FFT
trick a further k times
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The DIF FFT

I Reduction mod xn − 1 and xn + 1 combined with the
negacyclic transformation x 7→ ζny is called a Decimation In
Frequency (DIF) FFT butterfly

I A = [s0, s1, . . . , sn−1, t0, t1, . . . , tn−1]

I DIF FFT butterfly(A) =

[s0 + t0, s1 + t1, . . . , sn−1 + tn−1,

s0 − t0, ζn(s1 − t1), . . . , ζn−1
n (sn−1 − tn−1)]

I DIF FFT applies a DIF butterfly then squares the root of unity
ζn and recurses first on the left half, then on the right half
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The Inverse FFT

I Reversing the negacyclic transformation y 7→ ζ−1
n x followed by

CRT recombination (without rescaling) is called an inverse
FFT (IFFT) butterfly

I A = [s0, s1, . . . , sn−1, t0, t1, . . . , tn−1]

I DIF IFFT butterfly(A) =

[s0 + t0, s1 + ζ−1
n t1, . . . , sn−1 + ζ1−n

n tn−1,

s0 − t0, s1 − ζ−1
n t1, . . . , sn−1 − ζ1−n

n tn−1]

I DIF IFFT recurses first on the left half, then on the right half,
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The FFT Convolution

To compute the cyclic convolution using the FFT and IFFT,
suppose we have two vectors of length n = 2kd

I Compute k levels of FFT butterflies

I Perform multiplications mod xd − 1, called “pointwise
multiplications”

I Perform k levels of IFFT butterflies

I Rescale by 2k

I If n = 2k FFT convolution can be performed in time
O(n log n) coefficient operations
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Polynomials over Z/pZ

I Break f (x) in R = Z/pZ[x ] into pieces of length 2k−1 and
zero pad each to length 2k

I Consider these to be coefficients of a polynomial

I Think of these “coefficients” as being in the ring
S = R/(x2k

+ 1)

I Perform an FFT over the ring S

I Note x is a 2k+1-th root of unity

I Can use the negacyclic transformation to do pointwise
multiplications in S , or algorithm of your choice
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Cache Friendliness

I The DIF FFT is fairly cache friendly as the working set
quickly becomes localised

I The Matrix Fourier Algorithm improves cache locality

I Write y = x2n1 and let

f (x) = f1(y) + xf2(y) + x2f3(y) + · · ·+ x2n1−1f2n1−1(y)

with each fi of length 2n2

I Can be thought of as:
(i) do 2n1 FFT’s of length 2n2 (reduce the coeffs of the fi ’s
mod y − ζ i )
(ii) twist by powers of ζ (reduce the x j ’s mod the appropriate
x − ζ i ’s)
(iii) do 2n2 FFT’s of length 2n1 (reduce mod each x − ζ i )
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with each fi of length 2n2

I Can be thought of as:

(i) do 2n1 FFT’s of length 2n2 (reduce the coeffs of the fi ’s
mod y − ζ i )
(ii) twist by powers of ζ (reduce the x j ’s mod the appropriate
x − ζ i ’s)
(iii) do 2n2 FFT’s of length 2n1 (reduce mod each x − ζ i )
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Out-of-core FFT

I Can do length 2n2 and 2n1 FFT’s in memory and keep rest of
data on disk using Matrix Fourier Algorithm

I Problem: power series truncation can only be done after all
FFT’s complete

I Solution:
(i) bundle blocks of coefficients using Kronecker Segmentation
into large integer coefficients
(ii) Reduce large coefficients modulo many small primes
(iii) Perform power series multiplications over Z/pZ in-core,
performing truncation in-core
(iv) Recombine using CRT
(v) Recover small coefficients from large product coefficients

I Lose log n factor in complexity (due to CRT), but gain factor
of 2 in I/O and disk space
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Congruent numbers up to 1012

I In 2009 we computed 1012 terms of the congruent number
theta function by multiplying power series

I Used David Harvey’s zn poly (or FLINT) for the polynomial
multiplication over Z/pZ

I Wrote code for Kronecker segmentation, modular reduction,
CRT, transposes, etc

I Used OpenMP for parallelism (16 cores)

I Used mmap kernel service for disk I/O

I Code now part of FLINT (thetaproduct.c)
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1 (mod 8) Class

109 1010 1011

3801661 21768969 142778019

2× 1011 3× 1011 4× 1011

127475330 115249740 107930081

5× 1011 6× 1011 7× 1011

102774355 98817294 95656907

8× 1011 9× 1011 1012

93030373 90748990 88803354

Table 1 : Congruent numbers in the 1 (mod 8) class.
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3 (mod 8) Class

109 1010 1011

2921535 17019170 112979066

2× 1011 3× 1011 4× 1011

101436853 91949066 86213764

5× 1011 6× 1011 7× 1011

82196846 79106503 76626341

8× 1011 9× 1011 1012

74546400 72781203 71239101

Table 2 : Congruent numbers in the 3 (mod 8) class.
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2 (mod 16) Class

109 1010 1011

2110645 12294626 81759844

2× 1011 3× 1011 4× 1011

73445274 66579936 62455317

5× 1011 6× 1011 7× 1011

59536672 57282587 55504389

8× 1011 9× 1011 1012

53993974 52728711 51619397

Table 3 : Congruent numbers in the 2 (mod 16) class.
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10 (mod 16) Class

109 1010 1011

1842072 10842882 72556705

2× 1011 3× 1011 4× 1011

65378932 59347550 55720114

5× 1011 6× 1011 7× 1011

53152609 51190025 49599296

8× 1011 9× 1011 1012

48268971 47158661 46159584

Table 4 : Congruent numbers in the 10 (mod 16) class.
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