On the Complexity of the Montes Ideal Factorization Algorithm

David Ford and Olga Veres

Concordia University, Montréal

Introduction

Suppose we have the following.

K: algebraic number field

 \mathcal{O}_K : ring of integers

p: prime

 \mathbf{Q}_p : field of *p*-adic numbers

 α : element of \mathcal{O}_K such that $K = \mathbf{Q}(\alpha)$

- Factorization of $p\mathcal{O}_K$ can be determined via polynomial factorization over \mathbf{Q}_p .
- If $p \nmid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$ then factorization modulo p (plus Hensel lifting) suffices.

Complications arise when $p \mid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$.

- Zassenhaus
 - Round Two (1965): If an order is not p-maximal then it is a proper sub-order of its (p-local) coefficient ring.
 - Round Four (1975): Reducibility of a polynomial in $\mathbf{Q}_p[X]$ is revealed when the π -adic expansion of a root becomes ambiguous.

"one-element" variation: MAPLE, PARI

"two-element" variation: Magma

- Montes
 - o Berwick (1927), Ore (1928): Partial factorizations of ideals via Newton polygons
 - MacLane (1936): Characterization of valuations of polynomial rings
 - o Montes (1999), Guàrdia, Montes, Nart (2008): Exploitation of "higher order" Newton polygons to produce a complete ideal factorization algorithm

Elements of the Algorithm

The monic irreducible polynomial $\Phi(X)$ in $\mathbf{Z}[X]$ is given.

Level 0. Standard use of Newton polygons to find the *p*-adic valuations of roots of $\Phi(X)$.

Level $r \ (r \ge 1)$. Successive construction of the following:

- an irreducible monic polynomial $\varphi_r(X)$ in $\mathbf{Z}_p[X]$;
- a valuation V_r of $\mathbf{Q}_p[X]$;
- the φ_r -adic expansion of $\Phi(X)$;
- a finite field \mathbf{F}_{q_r} ;
- the Newton polygon $\mathcal{N}_r(\Phi)$ of Φ with respect to the valuation V_r ;
- a slope $-d_r/e_r$, with d_r and e_r coprime positive integers, of an edge of $\mathcal{N}_r(\Phi)$;
- the "associated polynomial" $\Psi_{\mathcal{S},\Phi}^{(r)}(Y) \in \mathbf{F}_{q_r}[Y]$ for each segment \mathcal{S} of $\mathcal{N}_r(\Phi)$;
- a monic irreducible factor ψ_r of $\Psi_{S,\Phi}^{(r)}$ with ξ_r a root of ψ_r and $f_r = \deg \psi_r$;
- a valuation V_{r+1} of $\mathbf{Q}_p[X]$;
- an irreducible monic polynomial $\varphi_{r+1}(X) \in \mathbf{Z}_p[X]$.

Reducibility. The polynomial $\Phi(X)$ is reducible if, for some $r \geq 0$,

- $\mathcal{N}_r(\Phi)$ has two or more edges, or
- $\Psi_{S,\Phi}^{(r)}(Y)$ has two or more irreducible factors in $\mathbf{F}_{q_r}[Y]$.

Worst case. The polynomial $\Phi(X)$ is irreducible in $\mathbf{Q}_p(X)$.

- The Newton polygon at each level is a single segment.
- The algorithm reaches the maximum level.
- Veres (2009): complexity is $O(n_{\Phi}^{3+\epsilon}\delta_{\Phi}^{2+\epsilon})$, with $n_{\Phi} = \deg \Phi$ and $\delta_{\Phi} = v_p(\operatorname{disc}\Phi)$.
- Ford & Veres (2010): complexity is $O(n_{\Phi}^{3+\epsilon}\delta_{\Phi} + n_{\Phi}^{2+\epsilon}\delta_{\Phi}^{2+\epsilon})$.

4

Definitions and Notation

Definition. Let $\varphi_0(X) = X$ and let V_0 denote the standard p-adic valuation of \mathbf{Q}_p . For $K(X) \in \mathbf{Q}_p[X]$ and $r \geq 1$, the level-r Newton polygon of K, denoted $\mathcal{N}_r(K)$, is the Newton polygon of K with respect to the valuation V_r of $\mathbf{Q}_p[X]$, which can be defined recursively as

$$V_r(K) = \min \left\{ e_{r-1} V_{r-1} (A_{r-1,k}) + k V_r (\varphi_{r-1}) \mid 0 \le k \le n \right\}$$

with $K(X) = \sum_{k=0}^{n} A_{r-1,k}(X) \varphi_{r-1}(X)^k$ the φ_{r-1} -adic expansion of K(X).

Remark. $\mathcal{N}_r(K)$ is the lower convex hull of the set

$$\{ (k, V_r(A_{r,k}\varphi_r^k)) \mid 0 \le k \le n, A_{r,k}(X) \ne 0 \},$$

and if $\deg K < \deg \varphi_r$ then

$$\mathcal{N}_r(K) = \{(0, V_r(K))\}, \quad V_{r+1}(K) = e_r V_r(K).$$

Definition. For $r \geq 1$ and K(X) a nonzero polynomial in $\mathbf{Z}_p[X]$ we define $\mathcal{S}_{r,K}$ to be the segment of $\mathcal{N}_r(K)$ having slope $-d_r/e_r$.

Definition. For positive integers r and ν we define

$$\alpha_{r,\nu} = \nu d_r^{-1} \operatorname{\mathbf{mod}} e_r \,, \quad \beta_{r,\nu} = (\nu - \alpha_{r,\nu} d_r)/e_r \,, \quad \mathcal{T}_{r,\nu} = \{ (\alpha_{r,\nu} + \lambda e_r, \, \beta_{r,\nu} - \lambda d_r) \mid 0 \le \lambda \le \lfloor \beta_{r,\nu} / d_r \rfloor \} \,.$$

Remark. If \mathcal{L} is the line through the point $(0, \nu/e_r)$ with slope $-d_r/e_r$ then $\mathcal{T}_{r,\nu}$ is the longest segment of \mathcal{L} with endpoints having nonnegative integer coordinates.

Definition. For $r \geq 0$ we define

$$\overline{\mu}_r = 0$$
, $\overline{\nu}_r = 0$, if $r = 0$,
 $\overline{\mu}_r = d_{r-1} + e_{r-1}\overline{\nu}_{r-1}$, $\overline{\nu}_r = e_{r-1}f_{r-1}\overline{\mu}_r$, if $r \ge 1$.

Remark. For $r \geq 1$ it is easily seen that $\overline{\mu}_r = V_r(\varphi_{r-1})$ and $\overline{\nu}_r = V_r(\varphi_r)$.

Associated Polynomial

Definition. Let $r \ge 0$, let α and β be nonnegative integers, and let \mathcal{S} be an arbitrary segment of slope $-d_r/e_r$ with left endpoint (α, β) . Let $m_0 = 0$ and for $r \ge 1$ and $k \ge 0$ define

$$m_r = (1/d_r) \bmod e_r, \qquad \Theta(\mathcal{S}, r, k) = \left\lfloor m_{r-1} \frac{(\beta - kd_r) - (\alpha + ke_r)\overline{\nu}_r}{e_{r-1}} \right\rfloor,$$

$$\Omega_r = \begin{cases} 1 & \text{if } r = 1, \\ \Omega_{r-1}^{e_{r-1}f_{r-1}} \xi_{r-1}^{m_{r-1}f_{r-1}\overline{\mu}_r} & \text{if } r > 1, \end{cases} \qquad \Gamma_{\mathcal{S}, r, k} = \Omega_r^{\alpha + ke_r} \xi_{r-1}^{\Theta(\mathcal{S}, r, k)} \in \mathbf{F}_{q_r}.$$

Let $K(X) \in \mathbf{Z}_p[X]$ have φ_r -adic expansion

$$K(X) = A_0(X) + A_1(X) \varphi_r(X) + \dots + A_n(X) \varphi_r(X)^n$$

with $d_r j + e_r V_r(A_j \varphi_r^j) \ge d_r \alpha + e_r \beta$ for $j = 0, \ldots, n$ and let

$$J = \{ k \mid 0 \le k \le \lfloor (n - \alpha)/e_r \rfloor, (\alpha + ke_r, V_r(A_{\alpha + ke_r} \varphi_r^{\alpha + ke_r})) \in \mathcal{S} \}.$$

We define the level-r associated polynomial of K with respect to S to be

$$\Psi_{\mathcal{S},K}^{(r)}(Y) = \sum_{k \in J} \eta_k Y^k$$

with $\eta_k \in \mathbf{F}_{q_r}$ defined as

$$\eta_{k} = \begin{cases}
\overline{A}_{\alpha+ke_{0}} & \text{if } r = 0, \\
\overline{B}_{k}(\xi_{0}), & \text{with } B_{k}(X) = A_{\alpha+ke_{1}}(X) / p^{\beta-kd_{1}}, & \text{if } r = 1, \\
\Gamma_{\mathcal{S},r,k}^{-1} \Psi_{\mathcal{T}_{r-1,\nu_{k}},A_{\alpha+ke_{r}}}^{(r-1)}, & \text{with } \nu_{k} = V_{r}(A_{\alpha+ke_{r}}), & \text{if } r \geq 2.
\end{cases}$$

We further define the natural level-r associated polynomial of K to be

$$\widetilde{\Psi}_K^{(r)}(Y) = \Psi_{\mathcal{S}_{r,K},K}^{(r)}(Y) .$$

Remark. The polynomial $\widetilde{\Psi}_{K}^{(r)}(Y)$ has nonzero constant term.

Outline of the Restricted Algorithm

• input: $\Phi(X) \in \mathbf{Z}[X]$ monic and irreducible, $p \in \mathbf{Z}$ prime

• output:
$$\begin{cases} \text{TRUE} & \text{if } \Phi(X) \text{ is irreducible over } \mathbf{Q}_p[X], \\ \text{FALSE} & \text{if } \Phi(X) \text{ is reducible over } \mathbf{Q}_p[X]. \end{cases}$$

 $\mathbf{M_0}$: 1. Factorize Φ modulo p:

$$\Phi \equiv \psi_{0,1}^{a_{0,1}} \cdots \psi_{0,\kappa_0}^{a_{0,\kappa_0}} \pmod{p}.$$

- 2. If $\kappa_0 > 1$ then **return** FALSE. If $\kappa_0 = 1$ and $a_{0,1} = 1$ then **return** TRUE.
- 3. Define $\varphi_0(X) = X$, $n_0 = 1$, $\psi_0 = \psi_{0,1}$, $d_0 = 0$, $f_0 = \deg \psi_0$, $e_0 = 1$, ξ_0 a root of ψ_0 .
- 4. Initialize $r \leftarrow 1$.
- $\mathbf{M_1}$: 5. If r = 1 let $\varphi_1(X)$ be a monic polynomial in $\mathbf{Z}[X]$ such that $\overline{\varphi}_1 = \psi_0$.

 If r > 1 construct H_{r-1} according to the algorithm below and let

$$\varphi_r = \varphi_{r-1}^{e_{r-1}f_{r-1}} + H_{r-1} .$$

- 6. Define $n_r = e_{r-1} f_{r-1} n_{r-1} = \deg \varphi_r$.
- 7. If r > 1 and $e_{r-1}f_{r-1} = 1$ then replace $\varphi_{r-1} \leftarrow \varphi_r$ and $r \leftarrow r 1$.

M₂: 8. If $\varphi_r = \Phi$ then **return** TRUE. If $\varphi_r \mid \Phi$ and $\varphi_r \neq \Phi$ then **return** FALSE.

- 9. Let $S_{r,1}, \ldots, S_{r,\lambda_r}$ be the segments of $\mathcal{N}_r(\Phi)$ and let $\zeta_{r,k} + 1$ be the number of points on $S_{r,k}$ with integer coordinates, for $k = 1, \ldots, \lambda_r$.
- 10. If $\lambda_r > 1$ then **return** FALSE. If $\lambda_r = 1$ and $\zeta_{r,1} = 1$ then **return** TRUE.
- 11. Let $-d_r/e_r$ be the slope of $S_{r,1}$, with d_r and e_r relatively prime and $e_r > 0$, and construct

$$\widetilde{\Psi}_{\Phi}^{(r)}(Y) \in \mathbf{F}_{q_r}[Y].$$

12. Factorize

$$\widetilde{\Psi}_{\Phi}^{(r)} = c_r \, \psi_{r,1}^{a_{r,1}} \, \cdots \, \psi_{r,\kappa_r}^{a_{r,\kappa_r}}$$

over \mathbf{F}_{q_r} , with $c_r \in \mathbf{F}_{q_r}$ a nonzero constant.

- 13. If $\kappa_r > 1$ then **return** FALSE. If $\kappa_r = 1$ and $a_{r,1} = 1$ then **return** TRUE.
- 14. Define $\psi_r = \psi_{r,1}$, $f_r = \deg \psi_r$, ξ_r a root of ψ_r .
- 15. Replace $r \leftarrow r + 1$. Go to M_1 .

Complexity of the Restricted Algorithm

Sequences

$$\widetilde{\mathrm{M}}_m \equiv \mathrm{M}_0(\Phi) \to \mathrm{M}_1(1) \to \mathrm{M}_2(1) \to \mathrm{M}_1(2) \to \mathrm{M}_2(2) \to \cdots \to \mathrm{M}_1(m) \to \mathrm{M}_2(m)$$

$$\widehat{\mathrm{M}}_r \equiv \mathrm{M}_1(r) \to \mathrm{M}_2(r-1) \to \mathrm{M}_1(r) \quad \text{(when } e_{r-1}f_{r-1} = 1)$$

Remarks

- $n_{\Phi} = \deg \Phi$.
- $\delta_{\Phi} = v_p(\operatorname{disc}\Phi)$.
- $n_r = \deg \varphi_r = e_{r-1} f_{r-1} n_{r-1} \ge 2^r \implies r \in O(\ln n_r)$.
- $\Delta_{\Phi} = \text{cost of an arithmetic operation in } \mathbf{Z}_p \in O(\delta_{\Phi}^{1+\epsilon}).$
- [Pauli, 2001] $\Longrightarrow \widehat{\mathbf{M}}_r$ occurs at most $2v_p(\operatorname{disc}\Phi)$ times

Execution Costs

$$\begin{array}{lll} \textbf{Newton Polygon} & \left\langle V_r(\Phi) \right\rangle_{\mathbf{F}_p} = 0 & \left\langle V_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} = 0 & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} = 0 & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} \in O(n_r^{3+\epsilon}) & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_r^{1+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} \in O(n_r^{3+\epsilon}) & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_r^{1+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} \in O(n_r^{3+\epsilon}) & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_r^{1+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} \in O(n_r^{3+\epsilon}) & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_r^{1+\epsilon} \Delta_\Phi) \\ & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{2+\epsilon}) & \left\langle \mathcal{N}_r(\Phi) \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \mathbf{Phase} \ \mathbf{M}_1 & \left\langle \mathcal{M}_1(r) \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon}) & \left\langle \mathcal{M}_1(r) \right\rangle_{\mathbf{Q}} \in O(n_r^{1+\epsilon} \Delta_\Phi) \\ & \mathbf{Phase} \ \mathbf{M}_2 & \left\langle \mathcal{M}_2(r) \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon}) & \left\langle \mathcal{M}_2(r) \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \mathbf{Sequence} \ \widehat{\mathbf{M}}_m & \left\langle \widetilde{\mathcal{M}}_m \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon}) & \left\langle \widetilde{\mathcal{M}}_r \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \mathbf{Sequence} \ \widehat{\mathbf{M}}_r & \left\langle \widehat{\mathcal{M}}_r \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon}) & \left\langle \widehat{\mathcal{M}}_r \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \Delta_\Phi) \\ & \widetilde{\mathbf{M}}_m + \mathbf{2} \, \delta_\Phi \, \widehat{\mathbf{M}}_r & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{F}_p} \in O(n_\Phi^{3+\epsilon} \delta_\Phi) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) \\ & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^{2+\epsilon} \delta_\Phi^{2+\epsilon}) & \left\langle \mathcal{M} \right\rangle_{\mathbf{Q}} \in O(n_\Phi^$$

Construction of $H_{t,\nu,\delta}$

Algorithm (Montes). Given d_s , e_s , f_s , etc., for $1 \le s \le r$ and given

- an integer t in the range $1 \le t \le r$,
- an integer $\nu \geq \overline{\nu}_{t+1}$,
- a nonzero polynomial $\delta(Y) \in \mathbf{F}_{q_t}[Y]$ of degree less than f_t ,

to construct a polynomial $H_{t,\nu,\delta}(X) \in \mathbf{Z}_p[X]$ such that

- $\deg H_{t,\nu,\delta} < n_{t+1}$,
- $V_{t+1}(H_{t,\nu,\delta}) = \nu$,
- $\Psi_{\mathcal{T}_{t,\nu},H_{t,\nu,\delta}}^{(t)}(Y) = \delta(Y).$

Construction. Let $\zeta_0, \ldots, \zeta_{f_t-1}$ in \mathbf{F}_{q_t} be such that

$$\delta(Y) = \sum_{i=0}^{f_t-1} \zeta_i Y^i.$$

For $i \in J_{\delta}$ construct $K_i(X)$ as follows.

• Take $\delta_i(Y)$ to be the unique polynomial in $\mathbf{F}_{q_{t-1}}[Y]$ of degree less than f_{t-1} such that

$$\delta_i(\xi_{t-1}) = \Gamma_{\mathcal{T}_{t,\nu},t,i} \, \zeta_i.$$

• If t = 1 take $P_i(X)$ to be a polynomial in $\mathbf{Z}_p[X]$ of degree less than f_0 such that

$$\overline{P}_i(Y) = \delta_i(Y)$$

and set

$$K_i(X) = p^{\beta_{1,\nu} - id_1} P_i(X).$$

• If $t \ge 2$ let

$$\nu_i = (\beta_{t,\nu} - id_t) - (\alpha_{t,\nu} + ie_t) \,\overline{\nu}_t$$

and set

$$K_i(X) = H_{t-1, \nu_i, \delta_i}(X).$$

Having constructed $K_i(X)$ for $i \in J_{\delta}$, set

$$H_{t,\nu,\delta}(X) = \sum_{i \in J_{\delta}} K_i(X) \varphi_t(X)^{\alpha_{t,\nu} + ie_t}$$
.

Properties of φ_r

Theorem (Montes). Let d_s , e_s , f_s , φ_s , ψ_s , etc., be given for $1 \le s \le r-1$ and let

$$\gamma_{r-1}(Y) = \Omega_{r-1}^{-e_{r-1}f_{r-1}}(\psi_{r-1}(Y) - Y^{f_{r-1}}),$$

$$\varphi_r(X) = \varphi_{r-1}(X)^{e_{r-1}f_{r-1}} + H_{r-1,\overline{\nu}_r,\gamma_{r-1}}(X).$$

Then $\varphi_r(X)$ is a monic polynomial in $\mathbf{Z}_p[X]$ with the following properties.

- $\deg \varphi_r = n_r$.
- $\mathcal{N}_{r-1}(\varphi_r)$ consists of the single segment $\mathcal{S}_{r-1,\varphi_r}$.
- $V_r(\varphi_r) = \overline{\nu}_r$.
- $\widetilde{\Psi}_{\varphi_r}^{(r-1)}(Y) = \Omega_{r-1}^{-e_{r-1}f_{r-1}}\psi_{r-1}(Y).$
- φ_r is irreducible over \mathbf{Z}_p .

MAPLE: http://www.mathstat.concordia.ca/faculty/ford/Student/Veres/mmtest.mpl

Thesis: http://www.mathstat.concordia.ca/faculty/ford/Student/Veres/vthp.pdf