

Short Bases of Lattices over Number Fields

Claus Fieker Damien Stehlé

University of Sydney/ Magma

LIP - CNRS/ENSL/U. Lyon/INRIA/UCBL

ANTS-IX, July 2010

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Overview	The Result	The Technique	Example	Conclusion
Introduction				

- Let K be a number field (possibly \mathbb{Q}). Then we have a canonical ring associated to K namely \mathbb{Z}_K , the ring of integers of K. (for \mathbb{Q} we obtain \mathbb{Z}).
- A lattice M over K is a torsion free, discrete and finitely generated \mathbb{Z}_K module that comes equiped with some quadratic form.
- Lattices arise naturally in a large number of problems originating in different areas of mathematics, from cryptography, geometry to representation theory to name a few.
- A common theme in most applications is to find a representation for the lattice that is "small".
- For lattices over \mathbb{Z} , the solution usually is to apply the
- LLL-algorithm to find a "short" basis for M.
- For our more general lattices, despite a few partial results, no corresponding reduction theory is known.

Overview	The Result	The Technique	Example	Conclusion
Classical	Lattices			

Since \mathbb{Z} is PID, all \mathbb{Z} -lattices have a basis. Via any fixed basis the quadratic form can be represented as a positive definite matrix. The LLL algorithm will find, in time polynomial in the input, a new basis for the lattice that is "short" and "nearly orthogonal". In particular the new basis approximates the lattice minima. A key idea underlying the algorithm is to try to approximate an orthogonal basis for the vector space generated by the lattice M. Crucial to the proof is the fact that any real or rational number can be approximated by an integer with an error bounded by |1/2|.

Let now K be a number field. Since in general \mathbb{Z}_K is not a PID any more, the lattice is no longer free (it still is projective). To overcome this problem two possibilities are used:

- use n+1 (or more) generators
- use of pseudo-bases with coefficient ideals

We use the second way as this preserves some of the most important properties of the basis:

- Cardinality of pseudo basis is degree of the vector space
- A pseudo basis contains a basis for the vector space
- Elements have a unique representation wrt it.

Over $\mathbb Z$ we have $M=\sum \mathbb Z b_i$ where the b_i form a basis, here all we get is

$$M=\sum \mathfrak{a}_i\alpha_i$$

where the a_i are ideals in K and the α_i a basis for the vector space.

Overview	The Result	The Technique	Example	Conclusion
Relative	HNF			

We have

$$M = \sum \mathfrak{a}_i \alpha_i$$

where the \mathfrak{a}_i are ideals in K and the α_i a basis for the vector space. For the rest of the talk we are going to restrict to *integral* lattices, ie $M \subseteq \mathbb{Z}_K^n$ for some n. For simplicity we are also assuming that $n = \dim_K M \otimes K = \text{length of any pseudo basis.}$

In analogy to the Hermite form over \mathbb{Z} , we have a similar upper or lower triangular echelon form for modules, algorithms have been developed by Bosma-Pohst and Cohen. Those algorithms can be used to compute a (canonical) pseudo-basis from any generating set of (pseudo) elements.

Overview	The Result	The Technique	Example	Conclusion
The Result				

Theorem

There exists a polynomial algorithm that, given a module M via some pseudo basis, will find a "short" pseudo basis

$$M = \sum \mathfrak{b}_i \beta_i$$

where

•
$$1 \in \mathfrak{b}_i$$
 (or, alternatively, $\beta_i \in M$)

•
$$N(\mathfrak{b}_i) \in [2^{-d^2}, 1]$$

•
$$\|\beta_i\| \le 2^{O(dn)}\lambda_i(M)$$

Where the O() depends on K (a fixed (reduced) integral basis), $K : \mathbb{Q} = d$, ||.|| is a norm induced by the quadratic form on M and the λ_i are the lattice minima.

Overview	The Result	The Technique	Example	Conclusion
Overviev	w of Idea			

Algorithm

- Let M be a \mathbb{Z} -lattice (given via some \mathbb{Z} -basis)
- Let c_1, \ldots, c_n be independent elements

• Compute
$$T \in Mat(n, \mathbb{Z})$$
 such that $(c_1, \ldots, c_n) = (b_1, \ldots, b_n)T$

• Compute H = ST where H is in Hermite form

• Set
$$(\tilde{b}_1, \dots, \tilde{b}_n) =: (b_1, \dots, b_n)S^{-1}$$

• Perform a size reduction on $(\tilde{b}_1, \ldots, \tilde{b}_n)$

Since S is unimodular, b_i still forms a basis. Since the transformation to c_i is in HNF (triangular), the new vectors cannot be too much longer than the c_i .

Overview	The Result	The Technique	Example	Conclusion
Change of	Basis			

To adopt this technique, we have to account for the presence of the coefficient ideals in the pseudo-basis. The key tool is the following:

Theorem

Let
$$M = \sum a_i \alpha_i$$
 and $N = \sum b_i \beta_i$. Assume
 $(\alpha_1, \dots, \alpha_n) = (\beta_1, \dots, \beta_n)T$ for some $T \in Gl(n, K)$. Then
• $N \subseteq M$ iff $T_{i,j} \in b_i a_j^{-1}$
• $M \subseteq N$ iff $(T^{-1})_{i,j} \in a_i b_j^{-1}$
• $N = M$ iff $N \subseteq M$ and $\prod a_i = \det T \prod b_i$

Overview	The Result	The Technique	Example	Conclusion
Adapted Ba	asis			

The application of the previous theorem is mostly immediate: Assume $M = \sum \mathfrak{a}_i \alpha_i$ and that c_1, \ldots, c_n is a maximal independent system of (short) elements. Then we have $(c_1, \ldots, c_n) = (\alpha_1, \ldots, \alpha_n)T$. We form the module $\Gamma = \sum \mathfrak{a}_i^{-1}T_i$ where T_i are the columns of T. The Hermite form algorithm applied to Γ finds

- A pseudo basis $\Gamma = \sum \mathfrak{b}_i H_i$ where H is triangular (and in HNF)
- A transformation S (automorphism of Γ) mapping $(H_1, \ldots, H_n) = (T_1, \ldots, T_n)S$, thus $S_{i,j} \in \mathfrak{b}_i^{-1}\mathfrak{a}_j$

Set $(\beta_1, \ldots, \beta_n) := (\alpha_1, \ldots, \alpha_n)S^{-1}$, then $M = \sum \mathfrak{b}_i^{-1}\beta_i$ and the transformation to the "short" elements c_i is triangular.

Overview	The Result	The Technique	Example	Conclusion
Size Redu	uction			

The size-reduction is immediate: We compute a orthogonal basis from the pseudo-basis and try to approximate the coefficients.

Algorithm

- Let Γ = Σ a_iα_i a module with pseudo basis and
 B : Γ ⊗ K × Γ ⊗ K → K a (hermitian) scalar product.
- For *i* in 2, ..., *n* do
- For j in $i 1, \ldots, 1$ compute

•
$$\mu := B(\alpha_j, \alpha_i)/B(\alpha_j, \alpha_j)$$

• Find
$$x \in \mathfrak{a}_j \mathfrak{a}_i^{-1}$$
 approximating μ

• Set
$$\alpha_i := \alpha_i - x \alpha_j$$

Overview	The Result	The Technique	Example	Conclusion

The size reduction now will not change the triangular shape of the transformation, but will potentially make the elements shorter - and is important for the analysis as this will bound the distance to the orthogonal basis.

To obtain the bounds on the norm of the coefficient ideals, we note that this is essentially the statement of the finiteness of the class number. Given any ideal \mathfrak{a} , we find a short element α in \mathfrak{a}^{-1} , thus $\mathfrak{a}\alpha$ is of bounded norm. If α is a LLL-short element we obtain the bounds stated.

In order to find a short representation of those ideals we are applying a special form of 2-element presentation.

Overview	The Result	The Technique	Example	Conclusion
Finding	Short Vectors			

To find the initial short vectors we construct the corresponding \mathbb{Z} -lattice Γ via any fixed \mathbb{Z} -bases for the coefficient ideals. In Γ we compute a short basis using the usual lattice techniques (repeated LLL with increasing reduction parameters, Seysen reduction in not too large dimension).

From the short \mathbb{Z} -basis we then select K-independent elements aiming to obtain short elements that generate a submodule of small index.

Overview	The Result	The Technique	Example	Conclusion
Small Id	leals			

Theorem

There exists a probabilistic polynomial time algorithm that, given an ideal $\mathfrak{a} = \sum \mathbb{Z} \alpha_i$ and a probability $t \in]0,1]$ finds $x_1, x_2 \in \mathfrak{a}$ such that

- $\mathfrak{a} = x_1 \mathbb{Z}_K + x_2 \mathbb{Z}_K$ with probability 1 t
- $||x_1||, ||x_2|| \le C_K N(\mathfrak{a})^{4/d}$

The constant C_K depends on K, the choice of an integral basis and the \mathbb{Z} -reduction algorithm used.

Thus the ideal can be represented in $O(\log(N(\mathfrak{a})))$ bits - in contrast to the $O(d \log N(\mathfrak{a}))$ bits coming from the naive approach.

Overview	The Result	The Technique	Example	Conclusion
Example				

Let $G := \langle \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \rangle$ be the group Q_8 with 8 elements. It is well known that G can be realized over any field where $-1 = \Box + \Box$, equivalently, over any normal complex field where the 2-adic completions have even degree. In particular, any imaginary quadratic field where the 2 is inert or ramified works. Using some Galois cohomology, Magma computes over $\mathbb{Q}(s) := \mathbb{Q}(\sqrt{-101})$:

$$\begin{array}{c} \langle \frac{1}{9334017} \begin{pmatrix} 3196257s - 20190 & s - 30704 \\ -5205600s - 30767884740 & -3196257s + 20190 \end{pmatrix}, \\ \frac{1}{9334017} \begin{pmatrix} 924360s + 3196257 & 304s + 1 \\ 358973136s - 19438628994 & -924360s - 3196257 \end{pmatrix} \rangle \end{array}$$

which is horrible.

To find a better version we want to apply the lattice reduction. We need to find a module ${\cal M}$ and a quadratic (hermitian) form. We use

$$M := \langle g \mathbb{Z}_K^2 \mid g \in G \rangle$$

Similarly, we obtain a quadratic form:

$$H := \sum_{g \in G} g^* g = t \begin{pmatrix} 1 & \frac{1}{101} (-10514s - 101) \\ \frac{1}{101} (10514s - 101) & 1186914 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some $t \in \mathbb{Q}_{>0}$.

Our choices define a \mathbb{Z} -lattice with Gram-matrix:

 $\begin{pmatrix} 1 & 0 & 3196256 & 3185742 \\ 0 & 101 & 10514 & 10514 \\ 3196256 & 10514 & 10216053604449 & 10182448168561 \\ 3185742 & 10514 & 10182448168561 & 10148953276870 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

which LLL reduces to the identity matrix.

Overview	The Result	The Technique	Example	Conclusion
- ·				
Example				

Using the 1st two LLL basis vectors in $\ensuremath{\mathsf{M}}$

$$\begin{pmatrix} 1\\ 0 \end{pmatrix}, \frac{1}{9334017} \begin{pmatrix} 3196257s - 20190\\ s - 30704 \end{pmatrix}$$

Of length 2 and 202. The original "basis" vectors had length 2 and 20432107208898. Representing the group wrt the new basis we get

$$\langle \begin{pmatrix} 10 & 1\\ -101 & -10 \end{pmatrix}, \begin{pmatrix} 0 & -\frac{s}{101}\\ -s & 0 \end{pmatrix} \rangle$$

which is much better.

Overview	The Result	The Technique	Example	Conclusion
Conclud	ing remarks			

- Implemented in MAGMA (in the packages).
- The article contains group theoretic examples.
- Relationship to crypto: Ideal-SIS, Ring-LWE and NTRU lattices.

Open questions:

- Optimizing the bit-complexity.
- The structuredness is exploited to compactify the representation, but not to speed up computations.
- Can we exploit the new module representation to speed up enumeration of short module vectors?

Overview	The Result	The Technique	Example	Conclusion
Conclud	ing remarks			

- Implemented in MAGMA (in the packages).
- The article contains group theoretic examples.
- Relationship to crypto: Ideal-SIS, Ring-LWE and NTRU lattices.

Open questions:

- Optimizing the bit-complexity.
- The structuredness is exploited to compactify the representation, but not to speed up computations.
- Can we exploit the new module representation to speed up enumeration of short module vectors?