
Overview The Result The Technique Example Conclusion

Short Bases of Lattices over Number Fields

Claus Fieker Damien Stehlé
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Introduction

Let K be a number field (possibly Q). Then we have a canonical
ring associated to K namely ZK , the ring of integers of K. (for Q
we obtain Z).
A lattice M over K is a torsion free, discrete and finitely generated
ZK module that comes equiped with some quadratic form.
Lattices arise naturally in a large number of problems originating in
different areas of mathematics, from cryptography, geometry to
representation theory to name a few.
A common theme in most applications is to find a representation
for the lattice that is “small”.
For lattices over Z, the solution usually is to apply the
LLL-algorithm to find a “short” basis for M .
For our more general lattices, despite a few partial results, no
corresponding reduction theory is known.
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Classical Lattices

Since Z is PID, all Z-lattices have a basis. Via any fixed basis the
quadratic form can be represented as a positive definite matrix.
The LLL algorithm will find, in time polynomial in the input, a new
basis for the lattice that is “short” and “nearly orthogonal”. In
particular the new basis approximates the lattice minima.
A key idea underlying the algorithm is to try to approximate an
orthogonal basis for the vector space generated by the lattice M .
Crucial to the proof is the fact that any real or rational number
can be approximated by an integer with an error bounded by |1/2|.
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Modules over the Ring of Integers

Let now K be a number field. Since in general ZK is not a PID
any more, the lattice is no longer free (it still is projective). To
overcome this problem two possibilities are used:

use n+ 1 (or more) generators

use of pseudo-bases with coefficient ideals

We use the second way as this preserves some of the most
important properties of the basis:

Cardinality of pseudo basis is degree of the vector space

A pseudo basis contains a basis for the vector space

Elements have a unique representation wrt it.

Over Z we have M =
∑

Zbi where the bi form a basis, here all we
get is

M =
∑

aiαi

where the ai are ideals in K and the αi a basis for the vector space.
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Relative HNF

We have
M =

∑
aiαi

where the ai are ideals in K and the αi a basis for the vector space.
For the rest of the talk we are going to restrict to integral lattices,
ie M ⊆ Zn

K for some n. For simplicity we are also assuming that
n = dimK M ⊗K = length of any pseudo basis.
In analogy to the Hermite form over Z, we have a similar upper or
lower triangular echelon form for modules, algorithms have been
developed by Bosma-Pohst and Cohen. Those algorithms can be
used to compute a (canonical) pseudo-basis from any generating
set of (pseudo) elements.
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The Result

Theorem

There exists a polynomial algorithm that, given a module M via
some pseudo basis, will find a “short” pseudo basis

M =
∑

biβi

where

1 ∈ bi (or, alternatively, βi ∈M)

N(bi) ∈ [2−d2
, 1]

‖βi‖ ≤ 2O(dn)λi(M)
Where the O() depends on K (a fixed (reduced) integral basis),
K : Q = d, ‖.‖ is a norm induced by the quadratic form on M and
the λi are the lattice minima.



Overview The Result The Technique Example Conclusion

Overview of Idea

Algorithm

Let M be a Z-lattice (given via some Z-basis)

Let c1, . . ., cn be independent elements

Compute T ∈ Mat(n,Z) such that
(c1, . . . , cn) = (b1, . . . , bn)T
Compute H = ST where H is in Hermite form

Set (b̃1, . . . , b̃n) =: (b1, . . . , bn)S−1

Perform a size reduction on (b̃1, . . . , b̃n)

Since S is unimodular, b̃i still forms a basis. Since the
transformation to ci is in HNF (triangular), the new vectors cannot
be too much longer than the ci.
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Change of Basis

To adopt this technique, we have to account for the presence of the
coefficient ideals in the pseudo-basis. The key tool is the following:

Theorem

Let M =
∑

aiαi and N =
∑

biβi. Assume
(α1, . . . , αn) = (β1, . . . , βn)T for some T ∈ Gl(n,K). Then

N ⊆M iff Ti,j ∈ bia
−1
j

M ⊆ N iff (T−1)i,j ∈ aib
−1
j

N = M iff N ⊆M and
∏

ai = detT
∏

bi
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Adapted Basis

The application of the previous theorem is mostly immediate:
Assume M =

∑
aiαi and that c1, . . ., cn is a maximal

independent system of (short) elements. Then we have
(c1, . . . , cn) = (α1, . . . , αn)T .
We form the module Γ =

∑
a−1

i Ti where Ti are the columns of T .
The Hermite form algorithm applied to Γ finds

A pseudo basis Γ =
∑

biHi where H is triangular (and in
HNF)

A transformation S (automorphism of Γ) mapping
(H1, . . . ,Hn) = (T1, . . . , Tn)S, thus Si,j ∈ b−1

i aj

Set (β1, . . . , βn) := (α1, . . . , αn)S−1, then M =
∑

b−1
i βi and the

transformation to the “short” elements ci is triangular.
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Size Reduction

The size-reduction is immediate: We compute a orthogonal basis
from the pseudo-basis and try to approximate the coefficients.

Algorithm

Let Γ =
∑

aiαi a module with pseudo basis and
B : Γ⊗K × Γ⊗K → K a (hermitian) scalar product.

For i in 2, . . ., n do

For j in i− 1, . . ., 1 compute

µ := B(αj , αi)/B(αj , αj)
Find x ∈ aja

−1
i approximating µ

Set αi := αi − xαj
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The size reduction now will not change the triangular shape of the
transformation, but will potentially make the elements shorter -
and is important for the analysis as this will bound the distance to
the orthogonal basis.
To obtain the bounds on the norm of the coefficient ideals, we
note that this is essentially the statement of the finiteness of the
class number. Given any ideal a, we find a short element α in a−1,
thus aα is of bounded norm. If α is a LLL-short element we obtain
the bounds stated.
In order to find a short representation of those ideals we are
applying a special form of 2-element presentation.
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Finding Short Vectors

To find the initial short vectors we construct the corresponding
Z-lattice Γ via any fixed Z-bases for the coefficient ideals. In Γ we
compute a short basis using the usual lattice techniques (repeated
LLL with increasing reduction parameters, Seysen reduction in not
too large dimension).
From the short Z-basis we then select K-independent elements
aiming to obtain short elements that generate a submodule of
small index.
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Small Ideals

Theorem

There exists a probabilistic polynomial time algorithm that, given
an ideal a =

∑
Zαi and a probability t ∈]0, 1] finds x1, x2 ∈ a

such that

a = x1ZK + x2ZK with probability 1− t
‖x1‖, ‖x2‖ ≤ CKN(a)4/d

The constant CK depends on K, the choice of an integral basis
and the Z-reduction algorithm used.

Thus the ideal can be represented in O(log(N(a))) bits - in
contrast to the O(d logN(a)) bits coming from the naive
approach.
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Example

Let G := 〈
(
i 0
0 −i

)
,

(
0 i
i 0

)
〉 be the group Q8 with 8 elements.

It is well known that G can be realized over any field where
−1 = + , equivalently, over any normal complex field where the
2-adic completions have even degree. In particular, any imaginary
quadratic field where the 2 is inert or ramified works. Using some
Galois cohomology, Magma computes over Q(s) := Q(

√
−101):

〈 1
9334017

(
3196257s− 20190 s− 30704

−5205600s− 30767884740 −3196257s+ 20190

)
,

1
9334017

(
924360s+ 3196257 304s+ 1

358973136s− 19438628994 −924360s− 3196257

)
〉

which is horrible.
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Example

To find a better version we want to apply the lattice reduction. We
need to find a module M and a quadratic (hermitian) form. We
use

M := 〈gZ2
K | g ∈ G〉

Similarly, we obtain a quadratic form:

H :=
∑
g∈G

g∗g = t

(
1 1

101(−10514s− 101)
1

101(10514s− 101) 1186914

)
for some t ∈ Q>0.
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Our choices define a Z-lattice with Gram-matrix:
1 0 3196256 3185742
0 101 10514 10514

3196256 10514 10216053604449 10182448168561
3185742 10514 10182448168561 10148953276870


which LLL reduces to the identity matrix.
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Example

Using the 1st two LLL basis vectors in M(
1
0

)
,

1
9334017

(
3196257s− 20190

s− 30704

)
Of length 2 and 202. The original “basis” vectors had length 2 and
20432107208898. Representing the group wrt the new basis we get

〈
(

10 1
−101 −10

)
,

(
0 − s

101
−s 0

)
〉

which is much better.
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Concluding remarks

Implemented in MAGMA (in the packages).

The article contains group theoretic examples.

Relationship to crypto: Ideal-SIS, Ring-LWE and NTRU
lattices.

Open questions:

Optimizing the bit-complexity.

The structuredness is exploited to compactify the
representation, but not to speed up computations.

Can we exploit the new module representation to speed up
enumeration of short module vectors?
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