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K3 surfaces

Definition
A K3 surface is a simply connected proper algebraic surface with trivial
canonical class.

Examples

A K3 surface of degree 2 is a double cover of P2, ramified at a smooth
sextic curve.

A K3 surface of degree 4 is a smooth quartic in P3.

A K3 surface of degree 6 is a smooth complete intersection of a quadric
and a cubic in P4.

A K3 surface of degree 8 is a smooth complete intersection of three
quadrics in P5.
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K3 surfaces as complex algebraic surfaces

Properties of K3 surfaces

Betti numbers: 1, 0, 22, 0, 1

Hodge diamond: 1
0 0

1 20 1
0 0

1

Picard group: Zn for n ∈ {1, . . . , 20}

Hard problem
Compute the geometric Picard group explicitly.
(For a surface defined over Q)
Basic strategy: Use reduction modulo p.
This leads to an injection of Picard groups Pic(VQ) ↪→ Pic(VFp

).
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K3 surfaces over finite fields

The cohomology
The second etale cohomology group has dimension 22. One could ask for
the Frobenius action. This is closely related to the number of points on the
surface.

The Picard proup
The Picard group injects into the second etale cohomology group. One could
ask for its rank.

Conjecture (Tate)
The geometric Picard group generates the subspace of the second etale
cohomology on which all eigenvalues are qζ. (ζ is a root of unity.)

Remarks

The Picard rank is predicted to be even.

The Tate conjecture is proven for most K3 surfaces.
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Artin-Tate conjecture

Notation

V a K3 surface over Fq

Φ charcteristic polynomial of Frobenius on H2
ét(VFq

,Ql)

ρ rank of arithmetic Picard group

∆ discriminant of arithmetic Picard group

Br(V ) the Brauer group. Order is a square (if finite).

Conjecture (Artin-Tate, special case of K3 surfaces)

|∆| =

lim
T→q

Φ(T )
(T−q)ρ

q21−ρ#Br(V )
.

Theorem(Milne)
The Tate conjecture implies # Br(V ) <∞ and the Artin-Tate conjecture.
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Computing Φ

Theorem (Lefschetz Trace Formula)

#V (Fqe ) = 1 + q2e + Tr(Frobe)

Theorem (Newton’s identities)
The T 22−e-coefficient of Φ can be computed from the traces of
Frob,Frob2, . . . ,Frobe .

Theorem (Functional equation)

q22Φ(T ) = ±T 22Φ

(
q2

T

)

Observation (Hyperplane section)

Φ(q) = 0
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Computing Φ II

Algorithm

1 Count points on V (Fq), V (Fq2),. . . , V (Fq10) .

2 Compute the coefficient of T 21,. . . ,T 12. (Newton)

3 Apply the functional equation.
Determine the coefficient of T 0,. . . ,T 10 up to a common sign.

4 Get the coefficient of T 11 by using Φ(q) = 0.

Result
Two candidates for Φ. One for each sign in the functional equation.

ToDo
Exclude one of them.
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Computing Φ III

Determination of sign (naive)
Count points on V (Fq11), V (Fq12), . . . until sign is determined.

Theorem (Deligne)
All roots are of absolute value q. (Basic strategy, used in our 2008 paper.)
I.e., we show that the roots are in general impossible as eigenvalues on the
etale cohomology.

Goal:
Derive properites of characteristic polynomials to show:

A candidate is impossible for K3 surfaces in general.

A candidate is impossible for K3 surfaces of the given degree.

A candidate is impossible for K3 surfaces with known extra structure.
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Second application

Bounding Picard rank (using #V (Fq),. . . ,#V (Fq9))

1 Compute the coefficients as above for T 21,. . . ,T 13,T 9,. . . ,T 0.

2 3 coefficients and an unknown sign remain.

3 Assume more than two zeros of the form qζ.
I.e., we assume a Picard rank bigger than 2.
(The order of ζ is at most 66.)

4 Compute the characteristic polynomial for each assumption.
(Solve a linear system of equations.)

5 Exclude as many of the candidates as possible.

Result
In some cases we can prove the upper bound 2 for the geometric Picard
rank, without the most costly counting step.
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A comparison with other types of varieties

Theorem (Honda)
For each Weil polynomial f , there exists an abelian variety A such that
f n = Φ for some n. Here Φ is the characteristic polynomial of Frobenius on
the first etale cohomology of A.

Remark
The action of Frobenius on the other cohomology groups is determined by
its action on the first.

Case of curve (J.-P. Serre)
The inequalities #C (Fq) ≥ 0 and #C (Fq2) ≥ #C (Fq) restrict the possibi-
lities for the characteristic polynomial. (Here q small and gen(C ) big.)
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Heuristics

Counting (Nicholas M. Katz)

There are about q55 hypothetical characterstic polynomials.

There are about q19 K3 surfaces of a given degree.

There are not much more K3 surfaces in general.

Conclusion
The map from surfaces to polynomials can not be surjective.

Question
Can we say something about the image?
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Example

Equation (K3 surface of degree 2 over F7)

w2 = y6+3z6+5xz5+5x2y4+x2z4+3x3y3+x3z3+5x4y2+x4z2+5x5y+2x6 .

Point counting (up to F79)
66, 2 378, 118 113, 5 768 710, 282 535 041, 13 841 275 877, 678 223 852 225,
33 232 944 372 654, and 1 628 413 551 007 224

Question
Can we prove an upper bound of 2 for the Picard rank?
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Hypothetical characteristic polynomials

Assuming the geometric Picard rank is bigger than 2 we get

Φi (t) = t22 − 16 t21 + 140 t20 − 1 029 t19 + 5 831 t18 − 36 015 t17 + 268 912 t16

− 1 882 384 t15 + 11 529 602 t14 − 46 118 408 t13 + ai t
12 + bi t

11 + ci t
10

+ (−1)ji [−110 730 297 608 t9 + 1 356 446 145 698 t8 − 10 851 569 165 584 t7

+ 75 960 984 159 088 t6 − 498 493 958 544 015 t5 + 3 954 718 737 782 519 t4

− 34 196 685 556 119 429 t3 + 227 977 903 707 462 860 t2

− 1 276 676 260 761 792 016 t + 3 909 821 048 582 988 049]

for

j1 = 0, (a1, b1, c1) = (161 414 428,−1 129 900 996, 7 909 306 972) ,

j2 = 1, (a2, b2, c2) = ( 80 707 214, 0,−3 954 653 486) ,

j3 = 1, (a3, b3, c3) = (121 060 821, 0,−5 931 980 229) .

All roots are of absolute value 7.
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Application of the Artin-Tate formula

Result

polynomial field arithmetic #Br(V )|∆|
Picard rank

Φ1
F7 2 58
F49 2 4524

Φ2
F7 1 4
F49 2 1996

Φ3
F7 1 6
F49 2 2997

Interpretation
Φ1 is impossible in general, Φ2, Φ3 are impossible in degree 2.

Conclusion
The geometric Picard rank is at most 2.
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Using F710 data

Computation
#V (F710) = 79 792 267 067 823 523

Resulting polynomials

Φi (t) = t22 − 16 t21 + 140 t20 − 1 029 t19 + 5 831 t18 − 36 015 t17 + 268 912 t16

− 1 882 384 t15 + 11 529 602 t14 − 46 118 408 t13 + 40 353 607 t12 + ai t
11

+ (−1)ji [ −1 977 326 743 t10 + 110 730 297 608 t9 − 1 356 446 145 698 t8

+ 10 851 569 165 584 t7 − 75 960 984 159 088 t6 + 498 493 958 544 015 t5

− 3 954 718 737 782 51 9t4 + 34 196 685 556 119 429 t3

− 227 977 903 707 462 860 t2 + 1 276 676 260 761 792 016 t

− 3 909 821 048 582 988 049]

for j4 = 0, and a4 = 0, or j5 = 1, and a5 = 564 950 498.
All roots are of absolute value 7.
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Application of the Artin-Tate formula

Result

polynomial field arithmetic #Br(V )|∆|
Picard rank

Φ4
F7 1 2
F49 2 997

Φ5
F7 2 55
F49 2 4125

Interpretation
Φ4 is possible for a K3 surface of degree 2.
Φ5 is impossible for K3 surfaces in general.

Conclusion
Φ4 is the characteristic polynomial.
The minus-sign in the functional equation is correct.
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The methods used

Using known divisors
If we know parts of the Picard group then we can compare known and pre-
dicted ranks. In the case of equal ranks, we can compare the discriminants.

Without a known divisor
We can compare the predicted Picard rank for V (Fq) and V (Fqd ). In the
case of equal ranks, we can compare the discriminants.

We call this the field extension condition.

Remark
This means: The Artin-Tate formula contradicts itself under field extension.
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The field extension condition in detail

Theorem (Jahnel & E. 2010)
The field extension condition is independent of the Tate conjecture.

We can use arguments from Milne’s proof.

Theorem (Jahnel & E. 2010)
The field extension condition for Fq2/Fq implies all other
field extension conditions.

Theorem (Jahnel & E. 2010)
Let Φ(t) = (t − q)rψ(t) with ψ(q) 6= 0.
The field extension condition means qψ(−q) is a square in Q.
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A statistical test of the conditions

The sample

p = 2 p = 3 p = 5 p = 7

d = 2 1000 rand 1000 rand 1000 dec 1000 dec

d = 4 1000 rand 1000 ell

d = 6 1000 rand 1000 ell

d = 8 1000 rand 1000 ell

dec = decoupled, ell = elliptic, rand = random

Point counting

naive counting

using elliptic fibration (if exists)

decoupled case (convolution)
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Proving geometric Picard rank ≤ 2 using data up to Fq9

Number of polynomials 0 1 2 3 4 5 6

d = 2, p = 2 without 84 479 312 89 21 12 3
with A-T conditions 149 598 218 28 7 0 0

d = 2, p = 3 without 116 480 285 88 24 4 3
with A-T conditions 214 573 193 20 0 0 0

d = 2, p = 5 without 85 581 209 96 25 4 0
with A-T conditions 158 651 169 20 2 0 0

d = 2, p = 7 without 92 534 232 98 37 7 0
with A-T conditions 214 611 154 21 0 0 0

d = 4, p = 2 without 40 532 303 87 29 8 1
with A-T conditions 81 638 249 27 5 0 0

d = 4, p = 3 without 22 669 242 57 9 1 0
with A-T conditions 53 785 161 1 0 0 0

d = 6, p = 2 without 39 549 312 70 22 6 2
with A-T conditions 83 645 257 14 1 0 0

d = 6, p = 3 without 16 713 217 47 7 0 0
with A-T conditions 50 797 148 5 0 0 0

d = 8, p = 2 without 25 657 268 38 8 4 0
with A-T conditions 29 723 239 5 4 0 0

d = 8, p = 3 without 12 720 236 27 4 1 0
with A-T conditions 20 803 175 2 0 0 0
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Decision of sign using data up to Fq10

p 2 3 5 7 2 3 2 3 2 3
d 2 2 2 2 4 4 6 6 8 8

Known signs without A-T 768 843 864 869 761 876 790 888 822 897
Known signs using A-T 863 940 940 961 863 943 868 933 867 944
Remaining unknown signs 137 60 60 39 137 57 132 67 133 56
Data up to Fp11 insufficient 84 23 15 12 69 19 77 25 72 21
Data up to Fp12 insufficient 41 11 2 1 39 3 42 11 47 7
Data up to Fp13 insufficient 22 5 1 0 24 2 20 2 24 2
Data up to Fp14 insufficient 13 2 0 0 12 0 13 1 8 0
Data up to Fp15 insufficient 7 0 0 0 8 0 7 0 5 0
Data up to Fp16 insufficient 4 0 0 0 3 0 2 0 4 0
Data up to Fp17 insufficient 4 0 0 0 2 0 2 0 0 0
Data up to Fp18 insufficient 4 0 0 0 0 0 1 0 0 0
Data up to Fp19 insufficient 2 0 0 0 0 0 1 0 0 0
Data up to Fp20 insufficient 0 0 0 0 0 0 0 0 0 0
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Proving geometric Picard rank ≤ 2 using data up to Fq10

rank 2 proven rank 2 proven rank 2 possible
not using #V (Fp10 )

p = 2, d = 2 without 84 271 330
with A-T conditions 149 278 301

p = 3, d = 2 without 116 397 460
with A-T conditions 214 409 428

p = 5, d = 2 without 85 353 425
with A-T conditions 158 360 382

p = 7, d = 2 without 92 460 511
with A-T conditions 214 464 476

p = 2, d = 4 without 40 132 197
with A-T conditions 81 138 163

p = 3, d = 4 without 22 79 114
with A-T conditions 53 79 81

p = 2, d = 6 without 39 145 183
with A-T conditions 83 152 163

p = 3, d = 6 without 16 74 101
with A-T conditions 50 74 81

p = 2, d = 8 without 25 65 93
with A-T conditions 29 65 74

p = 3, d = 8 without 12 23 47
with A-T conditions 20 23 25
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Summary

Idea
The Artin-Tate formula implies restrictions for the characteristic polynomial
of the Frobenius on the second etale cohomology.

Practical
The derived conditions can be checked easily.

Result
Our method is independent of the Tate conjecture.
We halve the cases of unknown sign.
We double the cases with rank ≤ 2 proven using only data up to Fq9 .

A.-S. Elsenhans (University of Bayreuth) Weil Polynomials of K3-Surfaces July 2010 23 / 23


	

