ANTS-IX Nancy, France July 2010

K ロ > K 御 > K 差 > K 差 > → 差 → の Q Q <

The Hodge and Tate conjectures: some numerical experiments.

> Henri Darmon (joint with Massimo Bertolini and Kartik Prasanna)

McGill University, Montreal

July 23, 2010

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q Q*

Algebraic cycles and the cycle class map

 $V =$ smooth, projective variety over $\mathbb C$ of dimension d.

$$
CH^{j}(V) = \left\{\begin{array}{c} \text{Codimension } j \\ \text{algebraic cycles on } V \end{array}\right\} \otimes \mathbb{Q} \ / \ \sim,
$$

where \sim denotes rational equivalence.

The cycle class map:

cl : CH $^{j}(V)\longrightarrow H_{\mathrm{dR}}^{j,j}(V(\mathbb{C}))\cap H_{\mathcal{B}}^{2j}$ ${}^{(2j)}_B(V(\mathbb{C}),\mathbb{Q}).$

$$
\langle \mathsf{cl}(\Delta), \alpha \rangle = \int_{\Delta(\mathbb{C})} \alpha, \qquad \forall \alpha \in H_{\mathrm{dR}}^{2d-2j}(V(\mathbb{C})).
$$

Algebraic cycles and the cycle class map

 $V =$ smooth, projective variety over $\mathbb C$ of dimension d.

$$
CH^{j}(V) = \left\{\begin{array}{c} \text{Codimension } j \\ \text{algebraic cycles on } V \end{array}\right\} \otimes \mathbb{Q} \ / \ \sim,
$$

where \sim denotes rational equivalence.

The cycle class map:

$$
\mathsf{cl}: \mathsf{CH}^j(V) \longrightarrow H^{j,j}_{\mathrm{dR}}(V(\mathbb{C})) \cap H^{2j}_B(V(\mathbb{C}), \mathbb{Q}).
$$
\n
$$
\langle \mathsf{cl}(\Delta), \alpha \rangle = \int_{\Delta(\mathbb{C})} \alpha, \qquad \forall \alpha \in H^{2d-2j}_{\mathrm{dR}}(V(\mathbb{C})).
$$

Conjecture (Hodge Conjecture)

The cycle class map cl is surjective.

A cohomology class in $H^{j,j}_{\mathrm{dR}}(V(\mathbb{C}))\cap H^{2j}_B$ $\mathcal{L}^{2j}_B(V(\mathbb{C}),\mathbb{Q})$

—i.e, a class of type (j, j) with rational periods–

is called a Hodge cycle.

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be "detected" in cohomology...

K ロ X K 個 X K ミ X K ミ X 「 ミ

 QQ

Conjecture (Hodge Conjecture)

The cycle class map cl is surjective.

A cohomology class in $H^{j,j}_{\mathrm{dR}}(V(\mathbb{C}))\cap H^{2j}_B$ $\mathcal{B}^{2j}(V(\mathbb{C}),\mathbb{Q})$

—i.e, a class of type (j, j) with rational periods—

is called a Hodge cycle.

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be "detected" in cohomology...

Conjecture (Hodge Conjecture)

The cycle class map cl is surjective.

A cohomology class in $H^{j,j}_{\mathrm{dR}}(V(\mathbb{C}))\cap H^{2j}_B$ $\mathcal{B}^{2j}(V(\mathbb{C}),\mathbb{Q})$

—i.e, a class of type (j, j) with rational periods—

is called a Hodge cycle.

Conjecture (Hodge Conjecture, restated)

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be "detected" in cohomology...

Conjecture (Hodge Conjecture)

The cycle class map cl is surjective.

A cohomology class in $H^{j,j}_{\mathrm{dR}}(V(\mathbb{C}))\cap H^{2j}_B$ $\mathcal{B}^{2j}(V(\mathbb{C}),\mathbb{Q})$

—i.e, a class of type (j, j) with rational periods—

is called a Hodge cycle.

Conjecture (Hodge Conjecture, restated)

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be "detected" in cohomology...

The cycle class map has an analogue in ℓ -adic étale cohomology:

$$
\mathsf{cl}_\ell : \mathsf{CH}^j(V/\mathsf{F}) \otimes \mathbb{Q}_\ell \longrightarrow \mathsf{H}^{2j}_{\mathrm{\acute{e}t}}(V_{\bar{\mathsf{F}}},\mathbb{Q}_\ell)(j)^{\mathsf{G}_{\bar{\mathsf{F}}}}.
$$

Conjecture (Tate)

The ℓ -adic cycle class map is surjective.

The Hodge conjecture is known for surfaces, and for codimension one cycles, but there seems to be very little evidence for cycles of higher codimension.

André Weil (Collected works, 1979).

La question que pose la "conjecture de Hodge" est bien naturelle... Par malheur, en dépit du mot de "conjecture", il n'y a, que je sache, pas l'ombre d'une raison d'y croire; on rendrait service aux géomètres si l'on pouvait trancher la question au moyen d'un contre-exemple.

A challenge for the experimental mathematician:

Produce an interesting class of Hodge cycles and design a numerical experiment to probe for the presence (or absence!!) of the corresponding algebraic cycles.

André Weil (Collected works, 1979).

La question que pose la "conjecture de Hodge" est bien naturelle... Par malheur, en dépit du mot de "conjecture", il n'y a, que je sache, pas l'ombre d'une raison d'y croire; on rendrait service aux géomètres si l'on pouvait trancher la question au moyen d'un contre-exemple.

A challenge for the experimental mathematician:

Problem

Produce an interesting class of Hodge cycles and design a numerical experiment to probe for the presence (or absence!!) of the corresponding algebraic cycles.

CM elliptic curves

$D \in \{7, 11, 19, 43, 67, 163\}.$

 $K =$ quadratic imaginary field of discriminant $-D$.

(K has class number one and $\mathcal{O}_{\mathsf{K}}^{\times}=\pm 1$.)

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_K(A)=\mathcal O_K.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

 $\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

CM elliptic curves

$D \in \{7, 11, 19, 43, 67, 163\}.$

$K =$ quadratic imaginary field of discriminant $-D$.

(K has class number one and $\mathcal{O}_{\mathsf{K}}^{\times}=\pm 1$.)

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_K(A)=\mathcal O_K.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

 $\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

 $K =$ quadratic imaginary field of discriminant $-D$.

 $(\mathcal{K}% _{k}(k+1),...,\mathcal{K}_{k}(k+1))$ has class number one and $\mathcal{O}_{\mathcal{K}}^{\times}=\pm1.$ $)$

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_K(A)=\mathcal O_K.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

 $\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

 $K =$ quadratic imaginary field of discriminant $-D$.

 $(\mathcal{K}% _{k}(k+1),...,\mathcal{K}_{k}(k+1))$ has class number one and $\mathcal{O}_{\mathcal{K}}^{\times}=\pm1.$ $)$

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_{\mathcal K}(A)=\mathcal O_{\mathcal K}.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

 $\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

 $K =$ quadratic imaginary field of discriminant $-D$.

 $(\mathcal{K}% _{k}(k+1),...,\mathcal{K}_{k}(k+1))$ has class number one and $\mathcal{O}_{\mathcal{K}}^{\times}=\pm1.$ $)$

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_{\mathcal K}(A)=\mathcal O_{\mathcal K}.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

 $\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

 $K =$ quadratic imaginary field of discriminant $-D$.

 $(\mathcal{K}% _{k}(k+1),...,\mathcal{K}_{k}(k+1))$ has class number one and $\mathcal{O}_{\mathcal{K}}^{\times}=\pm1.$ $)$

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_{\mathcal K}(A)=\mathcal O_{\mathcal K}.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

$$
\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.
$$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

 $K =$ quadratic imaginary field of discriminant $-D$.

 $(\mathcal{K}% _{k}(k+1),...,\mathcal{K}_{k}(k+1))$ has class number one and $\mathcal{O}_{\mathcal{K}}^{\times}=\pm1.$ $)$

 $A=$ elliptic curve over $\mathbb Q$ of conductor D^2 with $\mathsf{End}_{\mathcal K}(A)=\mathcal O_{\mathcal K}.$

 $\omega_\mathcal{A}\in\Omega^1(\mathcal{A}/\mathbb{Q})$: the Néron diferential of $\mathcal{A}.$

$$
\Lambda_A:=\{\int_{\gamma}\omega_A\}=\mathcal{O}_K\cdot\Omega_A.
$$

 $\Omega_A \in \mathbb{C}$ is called the Chowla-Selberg period attached to A.

The elliptic curve A and its Chowla-Selberg period

The de Rham cohomology of A

Because A has CM, we can write

$$
H_{\mathrm{dR}}^1(A/K)=K\cdot\omega_A\oplus K\cdot\eta_A,
$$

where

 \bullet ω_A is the Néron differential, viewed as an element of $\Omega^1(A/K);$

 $\mathbf{2}$ $\eta_{\mathcal{A}}$ is the generator of $H_{\text{dR}}^{0,1}(A/\mathbb{C})$ normalised so that

$$
\langle \omega_A, \eta_A \rangle \left(= \frac{1}{2\pi i} \int_{A(\mathbb{C})} \omega_A \wedge \eta_A \right) = 1.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

The fact that η_A is defined over K is specific to the CM setting.

The de Rham cohomology of A

Because A has CM, we can write

$$
H^1_{\mathrm{dR}}(A/K)=K\cdot\omega_A\oplus K\cdot\eta_A,
$$

where

- \bullet ω_A is the Néron differential, viewed as an element of $\Omega^1(A/K);$
- $\mathbf{2}$ $\eta_{\mathcal{A}}$ is the generator of $H_{\text{dR}}^{0,1}(A/\mathbb{C})$ normalised so that

$$
\langle \omega_A, \eta_A \rangle \left(= \frac{1}{2\pi i} \int_{A(\mathbb{C})} \omega_A \wedge \eta_A \right) = 1.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

The fact that η_A is defined over K is specific to the CM setting.

The de Rham cohomology of A

Because A has CM, we can write

$$
H^1_{\mathrm{dR}}(A/K)=K\cdot\omega_A\oplus K\cdot\eta_A,
$$

where

- \bullet ω_A is the Néron differential, viewed as an element of $\Omega^1(A/K);$
- $\mathbf{2}$ $\eta_{\mathcal{A}}$ is the generator of $H_{\text{dR}}^{0,1}(A/\mathbb{C})$ normalised so that

$$
\langle \omega_A, \eta_A \rangle \left(= \frac{1}{2\pi i} \int_{A(\mathbb{C})} \omega_A \wedge \eta_A \right) = 1.
$$

KORK EXTERNE PROVIDE

The fact that η_A is defined over K is specific to the CM setting.

The Hecke character attached to A

Theorem (Deuring)

There is a Hecke character ψ_A of K of infinity type $(1,0)$ and There is a Hecke character ψ_A or K or minity
conductor $\sqrt{-D}$ satisfying $L(A, s) = L(\psi_A, s)$.

More precisely, for all $a \in \mathcal{O}_K$,

$$
\psi_A((a))=\left(\frac{a}{\sqrt{-D}}\right)a.
$$

The Hecke character attached to A

Theorem (Deuring)

There is a Hecke character ψ_A of K of infinity type (1,0) and There is a Hecke character ψ_A or K or minity
conductor $\sqrt{-D}$ satisfying $L(A, s) = L(\psi_A, s)$.

More precisely, for all $a \in \mathcal{O}_K$,

$$
\psi_A((a))=\left(\frac{a}{\sqrt{-D}}\right)a.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Hecke characters of higher weight and theta series

Fix an integer $r\geq 0$, and let $\psi=\psi_{\bf A}^{r+1}$ A^{r+1} .

The character ψ is of infinity type $(r + 1, 0)$. conductor $(\psi) =$ \int \int $\overline{\mathcal{L}}$ $(-D)$ if r is even; 1 if r is odd.

$$
\theta_{\psi} = \frac{1}{2} \sum_{a \in \mathcal{O}_K} \psi(a) q^{a\overline{a}} \in \left\{ \begin{array}{ll} S_{r+2}(\Gamma_0(D^2)) & \text{if } r \text{ is even;} \\ S_{r+2}(\Gamma_0(D), \varepsilon_D) & \text{if } r \text{ is odd.} \end{array} \right.
$$

Hecke characters of higher weight and theta series

Fix an integer $r\geq 0$, and let $\psi=\psi_{\bf A}^{r+1}$ A^{r+1} .

The character ψ is of infinity type $(r + 1, 0)$. conductor $(\psi) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ (√ $(-D)$ if r is even; 1 if r is odd.

$$
\theta_{\psi} = \frac{1}{2} \sum_{a \in \mathcal{O}_K} \psi(a) q^{a\overline{a}} \in \left\{ \begin{array}{ll} S_{r+2}(\Gamma_0(D^2)) & \text{if } r \text{ is even;} \\ S_{r+2}(\Gamma_0(D), \varepsilon_D) & \text{if } r \text{ is odd.} \end{array} \right.
$$

Hecke characters of higher weight and theta series

Fix an integer $r\geq 0$, and let $\psi=\psi_{\bf A}^{r+1}$ A^{r+1} .

The character ψ is of infinity type $(r + 1, 0)$. conductor $(\psi) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ (√ $(-D)$ if r is even; 1 if r is odd.

$$
\theta_\psi = \frac{1}{2} \sum_{a \in \mathcal{O}_K} \psi(a) q^{a\overline{a}} \in \left\{ \begin{array}{ll} S_{r+2}(\Gamma_0(D^2)) & \text{if } r \text{ is even;} \\ S_{r+2}(\Gamma_0(D), \varepsilon_D) & \text{if } r \text{ is odd.} \end{array} \right.
$$

Modular curve:

$$
C = \begin{cases} Y_0(D^2) & \text{if } r \text{ is even;} \\ Y_0(D) & \text{if } r \text{ is odd.} \end{cases}
$$

 $W'_r = r$ -fold fiber product of the "universal" elliptic curve over C.

The open variety W_r' admits a smooth compactification, called the Kuga-Sato variety attached to (C, r) , and denoted W_r .

Modular curve:

$$
C = \begin{cases} Y_0(D^2) & \text{if } r \text{ is even;} \\ Y_0(D) & \text{if } r \text{ is odd.} \end{cases}
$$

 $W'_r = r$ -fold fiber product of the "universal" elliptic curve over C.

The open variety W_r' admits a smooth compactification, called the Kuga-Sato variety attached to (C, r) , and denoted W_r .

Modular curve:

$$
C = \begin{cases} Y_0(D^2) & \text{if } r \text{ is even;} \\ Y_0(D) & \text{if } r \text{ is odd.} \end{cases}
$$

 $W'_r = r$ -fold fiber product of the "universal" elliptic curve over C.

The open variety W_r' admits a smooth compactification, called the Kuga-Sato variety attached to (C, r) , and denoted W_r .

Modular curve:

$$
C = \begin{cases} Y_0(D^2) & \text{if } r \text{ is even;} \\ Y_0(D) & \text{if } r \text{ is odd.} \end{cases}
$$

 $W'_r = r$ -fold fiber product of the "universal" elliptic curve over C.

The open variety W_r' admits a smooth compactification, called the Kuga-Sato variety attached to (C, r) , and denoted W_r .

Let

$$
\Gamma = \begin{cases}\n\Gamma_0(D^2) & \text{if } r \text{ is even;} \\
\Gamma_0(D) & \text{if } r \text{ is odd,} \\
\end{cases}
$$
\nso that $C(\mathbb{C}) = \mathcal{H}/\Gamma$. Then

\n $\mathcal{W}(\mathbb{C}) = \mathcal{H}/\Gamma$, where $\mathbb{C} \setminus \{C(\mathbb{C})\}$ is a constant.

 $W_r'(\mathbb{C}) = (\mathbb{Z}^{2r} \rtimes \Gamma) \backslash (\mathbb{C}^{r} \times \mathcal{H}),$

where

 $(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1 + m_1 + n_1 \tau, \ldots, w_r + m_r + n_r \tau, \tau),$

$$
\begin{pmatrix}\n a & b \\
 c & d\n\end{pmatrix}\n\begin{pmatrix}\n w_1, \ldots, w_r, \tau\n\end{pmatrix} = \n\begin{pmatrix}\n w_1 & w_r & \pi + b \\
 c\tau + d, \ldots, \frac{w_r}{c\tau + d}, \frac{a\tau + b}{c\tau + d}\n\end{pmatrix}.
$$

Let

$$
\Gamma = \begin{cases} \Gamma_0(D^2) & \text{if } r \text{ is even;} \\ \Gamma_0(D) & \text{if } r \text{ is odd,} \end{cases}
$$
so that $C(\mathbb{C}) = \mathcal{H}/\Gamma$. Then

$$
W'_r(\mathbb{C})=(\mathbb{Z}^{2r}\rtimes \Gamma)\backslash (\mathbb{C}^r\times \mathcal{H}),
$$

where

 $(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1 + m_1 + n_1 \tau, \ldots, w_r + m_r + n_r \tau, \tau),$

$$
\begin{pmatrix}\n a & b \\
 c & d\n\end{pmatrix}\n\begin{pmatrix}\n w_1, \ldots, w_r, \tau\n\end{pmatrix} = \n\begin{pmatrix}\n w_1 & w_r & a\tau + b \\
 c\tau + d, \ldots, \frac{w_r}{c\tau + d}, \frac{a\tau + b}{c\tau + d}\n\end{pmatrix}.
$$

Let

$$
\Gamma = \left\{ \begin{array}{ll} \Gamma_0(D^2) & \text{if r is even;} \\[2mm] \Gamma_0(D) & \text{if r is odd,} \end{array} \right.
$$

so that $C(\mathbb{C}) = \mathcal{H}/\Gamma$. Then

$$
W'_r(\mathbb{C})=(\mathbb{Z}^{2r}\rtimes \Gamma)\backslash (\mathbb{C}^r\times \mathcal{H}),
$$

where

$$
(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1 + m_1 + n_1 \tau, \ldots, w_r + m_r + n_r \tau, \tau),
$$

$$
\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)(w_1,\ldots,w_r,\tau)=\left(\frac{w_1}{c\tau+d},\ldots,\frac{w_r}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right).
$$

Let

$$
\Gamma = \begin{cases} \Gamma_0(D^2) & \text{if } r \text{ is even;} \\ \Gamma_0(D) & \text{if } r \text{ is odd,} \end{cases}
$$

so that $C(\mathbb{C}) = \mathcal{H}/\Gamma$. Then

$$
W'_r(\mathbb{C})=(\mathbb{Z}^{2r}\rtimes\Gamma)\backslash(\mathbb{C}^r\times\mathcal{H}),
$$

where

$$
(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1 + m_1 + n_1 \tau, \ldots, w_r + m_r + n_r \tau, \tau),
$$

$$
\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)(w_1,\ldots,w_r,\tau)=\left(\frac{w_1}{c\tau+d},\ldots,\frac{w_r}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right).
$$

The de Rham cohomology of Kuga-Sato varieties

The holomorphic $(r + 1)$ -form on $\mathbb{C}^r \times \mathcal{H}$

$$
\omega_{\theta_\psi}=(2\pi i)^{r+1}\theta_\psi(\tau)d\mathsf{w}_1\cdots d\mathsf{w}_r d\tau
$$

is invariant under $\mathbb{Z}^{2r}\rtimes \mathsf{\Gamma},$ and hence corresponds to a regular $(r + 1)$ -form in $\Omega^{r+1}(W_r'/\mathbb{C})$.

It extends to W_r (cuspidality) and is defined over $\mathbb Q$ (*q*-expansion principle.)

Let $[\omega_{\omega_\psi}]$ denote its class in $H_{\mathrm{dR}}^{r+1,0}(W_r/\mathbb{Q}).$
The de Rham cohomology of Kuga-Sato varieties

The holomorphic $(r + 1)$ -form on $\mathbb{C}^r \times \mathcal{H}$

$$
\omega_{\theta_\psi}=(2\pi i)^{r+1}\theta_\psi(\tau)d\mathsf{w}_1\cdots d\mathsf{w}_r d\tau
$$

is invariant under $\mathbb{Z}^{2r}\rtimes \mathsf{\Gamma},$ and hence corresponds to a regular $(r + 1)$ -form in $\Omega^{r+1}(W_r'/\mathbb{C})$.

It extends to W_r (cuspidality) and is defined over $\mathbb Q$ (q-expansion principle.)

A O A G A 4 O A C A G A G A 4 O A C A C A G A G A G A C A

Let $[\omega_{\omega_\psi}]$ denote its class in $H_{\mathrm{dR}}^{r+1,0}(W_r/\mathbb{Q}).$

The de Rham cohomology of Kuga-Sato varieties

The holomorphic $(r + 1)$ -form on $\mathbb{C}^r \times \mathcal{H}$

$$
\omega_{\theta_\psi}=(2\pi i)^{r+1}\theta_\psi(\tau)d\mathsf{w}_1\cdots d\mathsf{w}_r d\tau
$$

is invariant under $\mathbb{Z}^{2r}\rtimes \mathsf{\Gamma},$ and hence corresponds to a regular $(r + 1)$ -form in $\Omega^{r+1}(W_r'/\mathbb{C})$.

It extends to W_r (cuspidality) and is defined over $\mathbb Q$ (q-expansion principle.)

A O A G A 4 O A C A G A G A 4 O A C A C A G A G A G A C A

Let $[\omega_{\omega_\psi}]$ denote its class in $H'^{+1,0}_{\mathrm{dR}}(W_r/{\mathbb Q}).$

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

The class $\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta_A^{r+1}$ I_A^{r+1} is a Hodge cycle in $H_{\text{dR}}^{2r+2}(V_r/\mathbb{C})$.

This result is "consistent" with the ℓ -adic picture:

- The ℓ -adic representation V_{θ_ψ} of $G_{\mathbb Q}$ attached to the modular form θ_ψ is a constitutent of $H^{r+1}_{\mathrm{\acute{e}t}}(W_{r/\bar{\mathbb{Q}}},\mathbb{Q}_\ell).$
- The representation V_{θ_ψ} is also isomorphic to

$$
\operatorname{Ind}_K^{\mathbb Q} \psi_A^{r+1} \subset H^{r+1}_{\text{\rm et}}(A'^{+1}_{/\bar {\mathbb Q}},\mathbb Q_\ell).
$$

 2990

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta_A^{r+1}$ I_A^{r+1} is a Hodge cycle in $H_{\rm dR}^{2r+2}(V_r/\mathbb{C})$.

This result is "consistent" with the ℓ -adic picture:

- The ℓ -adic representation V_{θ_ψ} of $G_{\mathbb Q}$ attached to the modular form θ_ψ is a constitutent of $H^{r+1}_{\mathrm{\acute{e}t}}(W_{r/\bar{\mathbb{Q}}},\mathbb{Q}_\ell).$
- The representation V_{θ_ψ} is also isomorphic to

$$
\operatorname{Ind}_K^{\mathbb Q} \psi_A^{r+1} \subset H^{r+1}_{\text{\rm et}}(A'^{+1}_{/\bar {\mathbb Q}},\mathbb Q_\ell).
$$

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta_A^{r+1}$ I_A^{r+1} is a Hodge cycle in $H_{\rm dR}^{2r+2}(V_r/\mathbb{C})$.

This result is "consistent" with the ℓ -adic picture:

- The ℓ -adic representation $\mathcal{V}_{\theta_\psi}$ of $G_{\mathbb{Q}}$ attached to the modular form θ_ψ is a constitutent of $H^{r+1}_{\mathrm{\acute{e}t}}(W_{r/\bar{\mathbb{Q}}},\mathbb{Q}_\ell).$
- The representation V_{θ_ψ} is also isomorphic to

$$
\operatorname{Ind}_K^{\mathbb Q} \psi_A^{r+1} \subset H^{r+1}_{\text{\rm et}}(A'^{+1}_{/\bar {\mathbb Q}}, {\mathbb Q}_\ell).
$$

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta_A^{r+1}$ I_A^{r+1} is a Hodge cycle in $H_{\rm dR}^{2r+2}(V_r/\mathbb{C})$.

This result is "consistent" with the ℓ -adic picture:

- The ℓ -adic representation $\mathcal{V}_{\theta_\psi}$ of $G_{\mathbb{Q}}$ attached to the modular form θ_ψ is a constitutent of $H^{r+1}_{\mathrm{\acute{e}t}}(W_{r/\bar{\mathbb{Q}}},\mathbb{Q}_\ell).$
- The representation V_{θ_ψ} is also isomorphic to

$$
\operatorname{Ind}_K^{\mathbb Q} \psi_A^{r+1} \subset H^{r+1}_{\text{\rm et}}(A'^{+1}_{/\bar {\mathbb Q}}, {\mathbb Q}_\ell).
$$

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta_A^{r+1}$ I_A^{r+1} is a Hodge cycle in $H_{\rm dR}^{2r+2}(V_r/\mathbb{C})$.

This result is "consistent" with the ℓ -adic picture:

- The ℓ -adic representation $\mathcal{V}_{\theta_\psi}$ of $G_{\mathbb{Q}}$ attached to the modular form θ_ψ is a constitutent of $H^{r+1}_{\mathrm{\acute{e}t}}(W_{r/\bar{\mathbb{Q}}},\mathbb{Q}_\ell).$
- The representation V_{θ_ψ} is also isomorphic to

$$
\operatorname{Ind}_K^{\mathbb Q} \psi_A^{r+1} \subset H^{r+1}_{\text{\rm et}}(A'^{+1}_{/\bar {\mathbb Q}},\mathbb Q_\ell).
$$

A special case of the Hodge conjecture

Question

Given D and $r > 0$, produce an algebraic cycle

$$
\Phi \subset V_r = W_r \times A^{r+1} \quad \text{ such that } cl(\Phi) = \Phi_{\text{Hodge}}
$$

...or show that no such cycle exists!

The Tate conjecture suggests that the cycle class Φ can be defined over K. (Or even, with some care, over (\mathbb{Q}) ...)

KORK SERVER SHOP

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $\mathcal{X}_0(D^2) \longrightarrow A.$
- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20. **Shioda-Inose**: there exists an involution ι on W_1 , such that

$$
W_1/\iota =
$$
Kummer(B) = B/ \pm 1, with B \sim A \times A.

The desired cycle can be built from the image of

$$
W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.
$$

An explicit equation (over $\mathbb Q$) for the Shioda-Inose structure in this case has been computed by Elkies...

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $\mathcal{X}_0(D^2) \longrightarrow A.$
- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20.

Shioda-Inose: there exists an involution ι on W_1 , such that

$$
W_1/\iota =
$$
Kummer $(B) = B/\pm 1$, with $B \sim A \times A$.

The desired cycle can be built from the image of

$$
W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.
$$

An explicit equation (over $\mathbb Q$) for the Shioda-Inose structure in this case has been computed by Elkies...

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $\mathcal{X}_0(D^2) \longrightarrow A.$
- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20. **Shioda-Inose**: there exists an involution ι on W_1 , such that

$$
W_1/\iota = \mathsf{Kummer}(B) = B/\pm 1, \quad \text{ with } B \sim A \times A.
$$

The desired cycle can be built from the image of

$$
W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.
$$

An explicit equation (over \mathbb{Q}) for the Shioda-Inose structure in this case has been computed by Elkies...

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $\mathcal{X}_0(D^2) \longrightarrow A.$
- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20. **Shioda-Inose**: there exists an involution ι on W_1 , such that

$$
W_1/\iota = \mathsf{Kummer}(B) = B/\pm 1, \quad \text{ with } B \sim A \times A.
$$

The desired cycle can be built from the image of

$$
W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.
$$

An explicit equation (over $\mathbb Q$) for the Shioda-Inose structure in this case has been computed by Elkies...

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $\mathcal{X}_0(D^2) \longrightarrow A.$
- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20. **Shioda-Inose**: there exists an involution ι on W_1 , such that

$$
W_1/\iota = \mathsf{Kummer}(B) = B/\pm 1, \quad \text{ with } B \sim A \times A.
$$

The desired cycle can be built from the image of

$$
W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.
$$

An explicit equation (over $\mathbb Q$) for the Shioda-Inose structure in this case has been computed by Elkies...

Exotic modular parametrisations

Let $X_r = W_r \times A^r$, and let

$$
CH^{r+1}(X_r)_0 \subset CH^{r+1}(X_r)
$$

denote the subgroup of classes of null-homologous cycles.

Key Remark: The conjectural algebraic cycle

$$
\Phi \subset V_r = W_r \times A^{r+1} = X_r \times A
$$

gives rise to an exotic modular parametrisation

$$
\Phi: \mathsf{CH}^{r+1}(X_r)_0 \longrightarrow \mathsf{CH}^1(A)_0 = A,
$$

KORK EXTERNE PROVIDE

which converts null-homologous algebraic cycles into rational points on A and respects fields of definition.

Exotic modular parametrisations

Let $X_r = W_r \times A^r$, and let

$$
CH^{r+1}(X_r)_0 \subset CH^{r+1}(X_r)
$$

denote the subgroup of classes of null-homologous cycles.

Key Remark: The conjectural algebraic cycle

$$
\Phi \subset V_r = W_r \times A^{r+1} = X_r \times A
$$

gives rise to an exotic modular parametrisation

$$
\Phi: \mathsf{CH}^{r+1}(X_r)_0 \longrightarrow \mathsf{CH}^1(A)_0 = A,
$$

KORK EXTERNE PROVIDE

which converts null-homologous algebraic cycles into rational points on A and respects fields of definition.

Definition of Φ

- **1** Let $\pi_A : X_r \times A \longrightarrow A$, $\pi_X : X_r \times A \longrightarrow X_r$ be the natural projections to each factor.
- **2** If $\Delta \in CH^{r+1}(X_r)$, then

$$
\dim(\pi_X^{-1}(\Delta)) = \dim(\Phi) = r + 1 = \frac{1}{2} \dim V_r;
$$

3 Therefore π_X^{-1} $\overline{X}^{-1}(\Delta) \cdot \Phi$ (if the intersection is transversal...) is

$$
\Phi(\Delta) := \pi_A(\pi_X^{-1}(\Delta) \cdot \Phi) \in A
$$

KORK EXTERNE PROVIDE

is well-defined.

Definition of Φ

- **1** Let $\pi_A : X_r \times A \longrightarrow A$, $\pi_X : X_r \times A \longrightarrow X_r$ be the natural projections to each factor.
- **2** If $\Delta \in CH^{r+1}(X_r)$, then

$$
\dim(\pi_X^{-1}(\Delta)) = \dim(\Phi) = r + 1 = \frac{1}{2} \dim V_r;
$$

3 Therefore π_X^{-1} $\overline{X}^{-1}(\Delta) \cdot \Phi$ (if the intersection is transversal...) is

$$
\Phi(\Delta) := \pi_A(\pi_X^{-1}(\Delta) \cdot \Phi) \in A
$$

KORK EXTERNE PROVIDE

is well-defined.

Definition of Φ

- **1** Let $\pi_A : X_r \times A \longrightarrow A$, $\pi_X : X_r \times A \longrightarrow X_r$ be the natural projections to each factor.
- **2** If $\Delta \in CH^{r+1}(X_r)$, then

$$
\dim(\pi_X^{-1}(\Delta)) = \dim(\Phi) = r + 1 = \frac{1}{2} \dim V_r;
$$

 \bullet Therefore π_X^{-1} $\overline{X}^{-1}(\Delta) \cdot \Phi$ (if the intersection is transversal...) is 0-dimensional, and

$$
\Phi(\Delta):=\pi_A(\pi_X^{-1}(\Delta)\cdot\Phi)\in A
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

is well-defined.

Proposition

The group $CH^{r+1}(X_r)_0(\overline{\mathbb{Q}})$ is infinitely generated.

 $CH^{r+1}(X_r)_0$ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \longrightarrow A'$.

$$
\Delta'_{\varphi,r} := \mathrm{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r.
$$

$$
\Delta_{\varphi,r}:=\varepsilon\Delta_{\varphi,r}'
$$

whe[r](#page-53-0)e ε ε ε is a simple projector that makes $\Delta_{\varphi, r}$ [nu](#page-29-0)[ll](#page-28-0)[-ho](#page-29-0)[mo](#page-0-0)logy

Proposition

The group $CH^{r+1}(X_r)_0(\overline{\mathbb{Q}})$ is infinitely generated.

Proof.

 $CH^{r+1}(X_r)_0$ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \longrightarrow A'$.

$$
\Delta'_{\varphi,r} := \mathrm{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r.
$$

$$
\Delta_{\varphi,r}:=\varepsilon\Delta_{\varphi,r}^{\prime}
$$

whe[r](#page-54-0)e ε ε ε is a simple projector that makes $\Delta_{\varphi, r}$ [nu](#page-29-0)[ll](#page-28-0)[-ho](#page-29-0)[mo](#page-0-0)lo[go](#page-0-0)[us.](#page-29-0)

Proposition

The group $CH^{r+1}(X_r)_0(\overline{\mathbb{Q}})$ is infinitely generated.

Proof.

 $CH^{r+1}(X_r)$ ₀ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \longrightarrow A'$.

$$
\Delta'_{\varphi,r} := \mathrm{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r.
$$

$$
\Delta_{\varphi,r}:=\varepsilon\Delta_{\varphi,r}^{\prime}
$$

whe[r](#page-55-0)e ε ε ε is a simple projector that makes $\Delta_{\varphi, r}$ [nu](#page-29-0)[ll](#page-28-0)[-ho](#page-29-0)[mo](#page-0-0)lo[go](#page-0-0)[us.](#page-29-0)

Proposition

The group $CH^{r+1}(X_r)_0(\overline{\mathbb{Q}})$ is infinitely generated.

Proof.

 $CH^{r+1}(X_r)$ ₀ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \longrightarrow A'$.

$$
\Delta'_{\varphi,r}:=\textrm{graph}(\varphi)^r\subset (A\times A')^r=(A')^r\times A^r\subset W_r\times A^r=X_r.
$$

$$
\Delta_{\varphi,r}:=\varepsilon\Delta_{\varphi,r}^{\prime}
$$

whe[r](#page-56-0)e ε ε ε is a simple projector that makes $\Delta_{\varphi, r}$ [nu](#page-29-0)[ll](#page-28-0)[-ho](#page-29-0)[mo](#page-0-0)lo[go](#page-0-0)[us.](#page-29-0)

Proposition

The group $CH^{r+1}(X_r)_0(\overline{\mathbb{Q}})$ is infinitely generated.

Proof.

 $CH^{r+1}(X_r)$ ₀ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \longrightarrow A'$.

$$
\Delta'_{\varphi,r}:=\textrm{graph}(\varphi)^r\subset (A\times A')^r=(A')^r\times A^r\subset W_r\times A^r=X_r.
$$

$$
\Delta_{\varphi,r}:=\varepsilon\Delta_{\varphi,r}',
$$

whe[r](#page-57-0)e ε ε ε is a simple projector that makes $\Delta_{\varphi,r}$ [nu](#page-29-0)[ll](#page-28-0)[-ho](#page-29-0)[mo](#page-0-0)lo[go](#page-0-0)[us.](#page-29-0)

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_φ attached to $\varphi.$

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ generates an infinite rank subgroup of $A(K^{\rm ab})$. In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points.*

Some problems:

1. Calculate Chow Heegner points numerically without calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_1, r)$ in $A(K)$ as $r > 0$ varies. **K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_φ attached to $\varphi.$

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ generates an infinite rank subgroup of $A(K^{\rm ab})$. In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points*.

Some problems:

1. Calculate Chow Heegner points numerically without calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_1, r)$ in $A(K)$ as $r > 0$ varies. **K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_φ attached to $\varphi.$

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ generates an infinite rank subgroup of $A(K^{\rm ab})$. In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points*.

Some problems:

1. Calculate Chow Heegner points numerically without calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_1, r)$ in $A(K)$ as $r > 0$ varies. **KOD KARD KED KED E VOOR**

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_φ attached to $\varphi.$

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ generates an infinite rank subgroup of $A(K^{\rm ab})$. In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points*.

Some problems:

1. Calculate Chow Heegner points numerically without calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_{1,r})$ in $A(K)$ as $r > 0$ varies.

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q Q*

Complex Abel-Jacobi maps

Recall the classical Abel-Jacobi map:

$$
AJ_A:CH^1(A(\mathbb{C}))_0=A(\mathbb{C})\longrightarrow \frac{\Omega^1(A/\mathbb{C})^{\vee}}{H_1(A(\mathbb{C}),\mathbb{Z})}=\mathbb{C}/\Lambda_A,
$$

given by

$$
\mathsf{AJ}_\mathcal{A}(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega.
$$

(If $\Delta = P - Q$, then $\partial^{-1}(\Delta)$ is any path from Q to P .)

Higher-dimensional analogue (Griffiths-Weil):

$$
AJ_{X_r}: CH^{r+1}(X_r)_0(\mathbb{C}) \longrightarrow \frac{Fil^{r+1} H_{dR}^{2r+1}(X_r/\mathbb{C})^{\vee}}{H_{2r+1}(X_r(\mathbb{C}), \mathbb{Z})}
$$

It is defined by the rule:

$$
AJ_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \qquad (\dim(\partial^{-1}(\Delta) = 2r + 1).
$$

Complex Abel-Jacobi maps

Recall the classical Abel-Jacobi map:

$$
AJ_A:CH^1(A(\mathbb{C}))_0=A(\mathbb{C})\longrightarrow \frac{\Omega^1(A/\mathbb{C})^{\vee}}{H_1(A(\mathbb{C}),\mathbb{Z})}=\mathbb{C}/\Lambda_A,
$$

given by

$$
\mathsf{AJ}_\mathcal{A}(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega.
$$

(If $\Delta = P - Q$, then $\partial^{-1}(\Delta)$ is any path from Q to P .)

Higher-dimensional analogue (Griffiths-Weil):

$$
AJ_{X_r}: CH^{r+1}(X_r)_0(\mathbb{C}) \longrightarrow \frac{Fil^{r+1} H_{dR}^{2r+1}(X_r/\mathbb{C})^{\vee}}{H_{2r+1}(X_r(\mathbb{C}),\mathbb{Z})}.
$$

It is defined by the rule:

$$
AJ_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \qquad (\dim(\partial^{-1}(\Delta) = 2r + 1).
$$

Complex Abel-Jacobi maps

Recall the classical Abel-Jacobi map:

$$
AJ_A:CH^1(A(\mathbb{C}))_0=A(\mathbb{C})\longrightarrow \frac{\Omega^1(A/\mathbb{C})^{\vee}}{H_1(A(\mathbb{C}),\mathbb{Z})}=\mathbb{C}/\Lambda_A,
$$

given by

$$
\mathsf{AJ}_\mathcal{A}(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega.
$$

(If $\Delta = P - Q$, then $\partial^{-1}(\Delta)$ is any path from Q to P .)

Higher-dimensional analogue (Griffiths-Weil):

$$
AJ_{X_r}: CH^{r+1}(X_r)_0(\mathbb{C}) \longrightarrow \frac{Fil^{r+1} H_{dR}^{2r+1}(X_r/\mathbb{C})^{\vee}}{H_{2r+1}(X_r(\mathbb{C}),\mathbb{Z})}.
$$

It is defined by the rule:

$$
\mathsf{AJ}_\mathcal{A}(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \qquad (\dim(\partial^{-1}(\Delta) = 2r + 1).
$$

Calculating Φ numerically

Theorem

If Φ exists, then

$$
\mathsf{AJ}_A(\Phi(\Delta_{\varphi,r}))(\omega_A)=\mathsf{AJ}_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_\psi}\wedge\eta_A^r).
$$

Functoriality of Abel-Jacobi maps under correspondences:

$$
\mathsf{AJ}_A(\Phi(\Delta_{\varphi,r}))(\omega_A)=\mathsf{AJ}_{X_r}(\Delta_{\varphi,r})(\Phi^*\omega_A),
$$

where

$$
\Phi^*: H^1_{\mathrm{dR}}(A) \longrightarrow H^{2r+1}_{\mathrm{dR}}(X_r)
$$

イロト イ部 トイモト イモト

 290

is the map induced by Φ on de Rham cohomology. The definition of Φ implies: $\Phi^*(\omega_\mathcal{A}) = \omega_{\theta_\psi} \wedge \eta_\mathcal{A}^r$.

Calculating Φ numerically

Theorem

If Φ exists, then

$$
\mathsf{AJ}_A(\Phi(\Delta_{\varphi,r}))(\omega_A)=\mathsf{AJ}_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_\psi}\wedge\eta_A^r).
$$

Proof.

Functoriality of Abel-Jacobi maps under correspondences:

$$
\mathsf{AJ}_A(\Phi(\Delta_{\varphi,r}))(\omega_A)=\mathsf{AJ}_{X_r}(\Delta_{\varphi,r})(\Phi^*\omega_A),
$$

where

$$
\Phi^*: H^1_{\mathrm{dR}}(A) \longrightarrow H^{2r+1}_{\mathrm{dR}}(X_r)
$$

イロト イ押ト イヨト イヨト

 QQ

Þ

is the map induced by Φ on de Rham cohomology. The definition of Φ implies: $\Phi^*(\omega_{\mathcal{A}}) = \omega_{\theta_\psi} \wedge \eta_{\mathcal{A}}^r.$

Calculating Φ numerically

Theorem

If Φ exists, then

$$
\mathsf{AJ}_A(\Phi(\Delta_{\varphi,r}))(\omega_A)=\mathsf{AJ}_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_\psi}\wedge\eta_A^r).
$$

Proof.

Functoriality of Abel-Jacobi maps under correspondences:

$$
\mathsf{AJ}_A(\Phi(\Delta_{\varphi,r}))(\omega_A)=\mathsf{AJ}_{X_r}(\Delta_{\varphi,r})(\Phi^*\omega_A),
$$

where

$$
\Phi^*: H^1_{\mathrm{dR}}(A) \longrightarrow H^{2r+1}_{\mathrm{dR}}(X_r)
$$

イロト イ押ト イヨト イヨト

 290

is the map induced by Φ on de Rham cohomology. The definition of Φ implies: $\Phi^*(\omega_{\mathcal{A}}) = \omega_{\theta_{\psi}} \wedge \eta_{\mathcal{A}}'$.

An explicit complex formula

Proposition

Let $\Delta_{\varphi,r}$ be the generalised Heegner cycle on X_r corresponding to the isogeny $\varphi : A \longrightarrow A'$, and let $\tau \in \mathcal{H}$ satisfy $A'(\mathbb{C}) = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$
AJ_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r) = \Omega_A^{-r} \frac{(2\pi i)^{r+1}}{(\tau - \overline{\tau})^r} \int_{i\infty}^{\tau} (z - \overline{\tau})^r \theta_{\psi}(z) dz.
$$

Since θ_{ψ} is a modular form of weight $r + 2$, the expression on the right is an "incomplete Eichler integral".

One recovers the familiar complex-analytic formula for calculating Heegner points, when $r = 0$.

 $\mathbf{A} \equiv \mathbf{I} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

 Ω

An explicit complex formula

Proposition

Let $\Delta_{\varphi,r}$ be the generalised Heegner cycle on X_r corresponding to the isogeny $\varphi : A \longrightarrow A'$, and let $\tau \in \mathcal{H}$ satisfy $A'(\mathbb{C}) = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$
AJ_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r) = \Omega_A^{-r} \frac{(2\pi i)^{r+1}}{(\tau - \overline{\tau})^r} \int_{i\infty}^{\tau} (z - \overline{\tau})^r \theta_{\psi}(z) dz.
$$

Since θ_{ψ} is a modular form of weight $r + 2$, the expression on the right is an "incomplete Eichler integral".

One recovers the familiar complex-analytic formula for calculating Heegner points, when $r = 0$.

 000

An explicit complex formula

Proposition

Let $\Delta_{\varphi,r}$ be the generalised Heegner cycle on X_r corresponding to the isogeny $\varphi : A \longrightarrow A'$, and let $\tau \in \mathcal{H}$ satisfy $A'(\mathbb{C}) = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$
AJ_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r) = \Omega_A^{-r} \frac{(2\pi i)^{r+1}}{(\tau - \overline{\tau})^r} \int_{i\infty}^{\tau} (z - \overline{\tau})^r \theta_{\psi}(z) dz.
$$

Since θ_{ψ} is a modular form of weight $r + 2$, the expression on the right is an "incomplete Eichler integral".

One recovers the familiar complex-analytic formula for calculating Heegner points, when $r = 0$.

KOD KAD KED KED E VOOR
The position of $\Phi(\Delta_{\varphi,r})$ in $A(K)$

Conjecture (Bertolini-Prasanna-D)

If $D = 7$, then $\Phi(\Delta_{1,r}) = 0$. For all $D \in \{11, 19, 43, 67, 163\}$ and all odd $r > 1$, the Chow-Heegner point $\Phi(\Delta_{1,r})$ belongs to $A(K) \otimes \mathbb{O}$ and is given by the formula

$$
\Phi(\Delta_{1,r})=\sqrt{-D}\cdot m_r\cdot P_A,
$$

where $m_r \in \mathbb{Z}$ satisfies the formula

$$
m_r^2 = \frac{2r!(2\pi\sqrt{D})^r}{\Omega_A^{2r+1}}L(\psi_A^{2r+1},r+1),
$$

and P_A is the generator of $A(\mathbb{Q}) \otimes \mathbb{Q}$ given in the next slide.

The Mordell-Weil generators P_A

Where does this conjecture come from?

p-adic methods

- \bullet The complex Abel-Jacobi map admits a p-adic analogue: $\mathsf{AJ}^{(p)}_{X_r}:\mathsf{CH}^{r+1}(X_r)_0(\mathbb{C}_p)\longrightarrow \mathsf{Fil}^{r+1}\, \mathcal{H}_{dR}^{2r+1}(X_r/\mathbb{C}_p)^\vee.$
- **Bertolini, Prasanna, D**: A p-adic Gross-Zagier formula relating $AJ_{X_r}^{(p)}(\Delta_{\varphi,r})$ to *p*-adic *L*-functions.
- In the case at hand, this formula gives (for all odd $r > 1$)

$$
\frac{\mathsf{AJ}_{X_r}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)}{\mathsf{AJ}_{X_1}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)} = \frac{m_r}{m_1}
$$

$$
m_r^2 = \frac{2r!(2\pi\sqrt{D})^r}{\Omega_A^{2r+1}} L(\psi_A^{2r+1}, r+1).
$$

Where does this conjecture come from?

p-adic methods

- \bullet The complex Abel-Jacobi map admits a p-adic analogue: $\mathsf{AJ}^{(p)}_{X_r}:\mathsf{CH}^{r+1}(X_r)_0(\mathbb{C}_p)\longrightarrow \mathsf{Fil}^{r+1}\, \mathcal{H}_{dR}^{2r+1}(X_r/\mathbb{C}_p)^\vee.$
- **Bertolini, Prasanna, D**: A p-adic Gross-Zagier formula relating $AJ_{X_r}^{(p)}(\Delta_{\varphi,r})$ to *p*-adic *L*-functions.

• In the case at hand, this formula gives (for all odd $r > 1$)

$$
\frac{\mathsf{AJ}_{X_r}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)}{\mathsf{AJ}_{X_1}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)} = \frac{m_r}{m_1},
$$

$$
m_r^2 = \frac{2r!(2\pi\sqrt{D})^r}{\Omega_A^{2r+1}} L(\psi_A^{2r+1}, r+1).
$$

Where does this conjecture come from?

p-adic methods

- \bullet The complex Abel-Jacobi map admits a p-adic analogue: $\mathsf{AJ}^{(p)}_{X_r}:\mathsf{CH}^{r+1}(X_r)_0(\mathbb{C}_p)\longrightarrow \mathsf{Fil}^{r+1}\, \mathcal{H}_{dR}^{2r+1}(X_r/\mathbb{C}_p)^\vee.$
- **Bertolini, Prasanna, D**: A p-adic Gross-Zagier formula relating $AJ_{X_r}^{(p)}(\Delta_{\varphi,r})$ to *p*-adic *L*-functions.
- In the case at hand, this formula gives (for all odd $r \ge 1$)

$$
\frac{\mathsf{AJ}_{X_r}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A')}{\mathsf{AJ}_{X_1}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A')} = \frac{m_r}{m_1},
$$

where

$$
m_r^2 = \frac{2r!(2\pi\sqrt{D})^r}{\Omega_A^{2r+1}}L(\psi_A^{2r+1},r+1).
$$

Let $\widetilde{P}_A \in \mathbb{C}$ be a lift of $P_A \in A(\mathbb{C}) = \mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$
AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},
$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of "square roots" of $L(\psi_A^{2r+1})$ A^{2r+1} , $r + 1$) produced by Villegas...

A O A G A 4 O A C A G A G A 4 O A C A C A G A G A G A C A

Let $\widetilde{P}_A\in \mathbb{C}$ be a lift of $P_A\in A(\mathbb{C})=\mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$
AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},
$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of "square roots" of $L(\psi_A^{2r+1})$ A^{2r+1} , $r + 1$) produced by Villegas...

A O A G A 4 O A C A G A G A 4 O A C A C A G A G A G A C A

Let $\widetilde{P}_A\in \mathbb{C}$ be a lift of $P_A\in A(\mathbb{C})=\mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$
AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},
$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of "square roots" of $L(\psi_A^{2r+1})$ A^{2r+1} , $r + 1$) produced by Villegas...

Let $\widetilde{P}_A\in \mathbb{C}$ be a lift of $P_A\in A(\mathbb{C})=\mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$
AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},
$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of "square roots" of $L(\psi_{\rm A}^{2r+1})$ A^{2r+1} , $r + 1$) produced by Villegas...

K ロ > K @ > K 할 > K 할 > - 할 - X 9 Q @

Conclusion

All the numerical experiments are consistent with the existence of an algebraic cycle $\Phi \in CH^{r+1}(V_r)$ attached to Φ_{Hodge} .

This gives some indirect evidence for the Hodge conjecture for some varieties of large dimension (up to 32, in the computed ranges.)

Should one believe more firmly in the Hodge conjecture because of this?

KORK EXTERNE PROVIDE

Conclusion

- All the numerical experiments are consistent with the existence of an algebraic cycle $\Phi \in CH^{r+1}(V_r)$ attached to Φ_{Hodge} .
- This gives some indirect evidence for the Hodge conjecture for some varieties of large dimension (up to 32, in the computed ranges.)
- Should one believe more firmly in the Hodge conjecture because of this?

A O A G A 4 O A C A G A G A 4 O A C A C A G A G A G A C A

Thank you for your attention!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000