Visualizing elements of Sha[3] in genus 2 jacobians

Sander Dahmen

Simon Fraser University

Joint work with Nils Bruin

Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k .

• the Mordell-Weil group $E(k)$

- the Mordell-Weil group $E(k)$
- the Shafarevich-Tate group $III(E/k)$.

- the Mordell-Weil group $E(k)$
- the Shafarevich-Tate group $III(E/k)$.

We want to describe elements of $III(E/k)$ explicitly.

 $III(E/k)$: equivalence classes of principal homogeneous spaces C/k for E/k with points everywhere locally.

 $III(E/k)$: equivalence classes of principal homogeneous spaces C/k for E/k with points everywhere locally. If C/k corresponds to an elements $\sigma \in \mathrm{III}(E/k)$ of order $n > 2$, then it can be represented as a curve of degree n in $\mathbb{P}^{n-1}.$

 $III(E/k)$: equivalence classes of principal homogeneous spaces C/k for E/k with points everywhere locally. If C/k corresponds to an elements $\sigma \in \mathrm{III}(E/k)$ of order $n > 2$, then it can be represented as a curve of degree n in $\mathbb{P}^{n-1}.$ Given an embedding $E \rightarrow A$ over k of abelian varieties.

 $III(E/k)$: equivalence classes of principal homogeneous spaces C/k for E/k with points everywhere locally. If C/k corresponds to an elements $\sigma \in \mathrm{III}(E/k)$ of order $n > 2$, then it can be represented as a curve of degree n in $\mathbb{P}^{n-1}.$ Given an embedding $E \rightarrow A$ over k of abelian varieties. We say that σ is *visible* in A, if for some $P \in A(\overline{k})$

$$
C \simeq_k E + P \subset A.
$$

 $III(E/k)$: equivalence classes of principal homogeneous spaces C/k for E/k with points everywhere locally. If C/k corresponds to an elements $\sigma \in \mathrm{III}(E/k)$ of order $n > 2$, then it can be represented as a curve of degree n in $\mathbb{P}^{n-1}.$ Given an embedding $E \rightarrow A$ over k of abelian varieties. We say that σ is *visible* in A, if for some $P \in A(\overline{k})$

$$
C\simeq_k E+P\subset A.
$$

Equivalently, σ lies in the kernel of $H^1(k, E) \to H^1(k, A)$.

Cremona and Mazur found that for surprisingly many elliptic curves E/\mathbb{Q} with nontrivial odd order elements of $III(E/\mathbb{Q})$, these element can be visualized in $J_0(N_E)$.

Cremona and Mazur found that for surprisingly many elliptic curves E/\mathbb{Q} with nontrivial odd order elements of $III(E/\mathbb{Q})$, these element can be visualized in $J_0(N_E)$.

Actually, they could be visualized in an abelian surface contained in the new part of $J_0(N_E)$.

Visualizing elements of III in abelian surfaces

Cremona and Mazur found that for surprisingly many elliptic curves E/\mathbb{Q} with nontrivial odd order elements of $III(E/\mathbb{Q})$, these element can be visualized in $J_0(N_F)$.

Actually, they could be visualized in an abelian surface contained in the new part of $J_0(N_F)$.

Mazur gave a first theoretical result trying to explain this.

Visualizing elements of III in abelian surfaces

Cremona and Mazur found that for surprisingly many elliptic curves E/\mathbb{Q} with nontrivial odd order elements of $III(E/\mathbb{Q})$, these element can be visualized in $J_0(N_E)$.

Actually, they could be visualized in an abelian surface contained in the new part of $J_0(N_F)$.

Mazur gave a first theoretical result trying to explain this.

Theorem (Mazur)

If $\sigma \in \mathrm{III}(E/k)$ has order 3, then σ is visible in an abelian surface.

Visualizing elements of III in abelian surfaces

Cremona and Mazur found that for surprisingly many elliptic curves E/\mathbb{Q} with nontrivial odd order elements of $III(E/\mathbb{Q})$, these element can be visualized in $J_0(N_F)$.

Actually, they could be visualized in an abelian surface contained in the new part of $J_0(N_F)$.

Mazur gave a first theoretical result trying to explain this.

Theorem (Mazur)

If $\sigma \in \mathrm{III}(E/k)$ has order 3, then σ is visible in an abelian surface.

How about visibility in jacobians?

Cremona and Mazur found that for surprisingly many elliptic curves E/\mathbb{Q} with nontrivial odd order elements of $III(E/\mathbb{Q})$, these element can be visualized in $J_0(N_F)$.

Actually, they could be visualized in an abelian surface contained in the new part of $J_0(N_F)$.

Mazur gave a first theoretical result trying to explain this.

Theorem (Mazur)

If $\sigma \in \mathrm{III}(E/k)$ has order 3, then σ is visible in an abelian surface.

How about visibility in jacobians?

Theorem (Bruin & D.)

If $\sigma \in \mathrm{III}(E/k)$ has order 3, then σ is visible in the jacobian of a curve of genus 2.

Let $\sigma \in \text{III}(E/k)[3]$ and choose $\delta \in \text{Sel}^{(3)}(E/k)$ mapping to σ .

Let $\sigma \in \text{III}(E/k)[3]$ and choose $\delta \in \text{Sel}^{(3)}(E/k)$ mapping to σ . If we can construct an elliptic curve E'/k such that

Let $\sigma \in \text{III}(E/k)[3]$ and choose $\delta \in \text{Sel}^{(3)}(E/k)$ mapping to σ . If we can construct an elliptic curve E'/k such that

• there exists an isomorphism of $Gal(\overline{k}/k)$ -modules

 $\lambda : E[3] \rightarrow E'[3]$

Let $\sigma \in \text{III}(E/k)[3]$ and choose $\delta \in \text{Sel}^{(3)}(E/k)$ mapping to σ . If we can construct an elliptic curve E'/k such that

• there exists an isomorphism of $Gal(\overline{k}/k)$ -modules

$$
\lambda: E[3] \to E'[3]
$$

 \bullet δ maps to zero under

$$
H^1(k, E[3]) \to H^1(k, E'[3]) \to H^1(k, E'),
$$

Let $\sigma \in \text{III}(E/k)[3]$ and choose $\delta \in \text{Sel}^{(3)}(E/k)$ mapping to σ . If we can construct an elliptic curve E'/k such that

• there exists an isomorphism of $Gal(\overline{k}/k)$ -modules

$$
\lambda: E[3] \to E'[3]
$$

 \bullet δ maps to zero under

$$
H^1(k, E[3]) \to H^1(k, E'[3]) \to H^1(k, E'),
$$

then σ is visible in the abelian surface (over k)

$$
A:=(E\times E')/\Delta
$$

where Δ denotes the graph of λ .

Let $\sigma \in \text{III}(E/k)[3]$ and choose $\delta \in \text{Sel}^{(3)}(E/k)$ mapping to σ . If we can construct an elliptic curve E'/k such that

• there exists an isomorphism of $Gal(\overline{k}/k)$ -modules

$$
\lambda: E[3] \to E'[3]
$$

 \bullet δ maps to zero under

$$
H^1(k, E[3]) \to H^1(k, E'[3]) \to H^1(k, E'),
$$

then σ is visible in the abelian surface (over k)

$$
A:=(E\times E')/\Delta
$$

where Δ denotes the graph of λ .

So
$$
\Delta(\overline{k}) = \{ (P, \lambda(P)) : P \in E[3](\overline{k}) \}.
$$

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

•
$$
E' := \text{Jac}(C')
$$
 has $E[3] \simeq E'[3]$

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

•
$$
E' := \text{Jac}(C')
$$
 has $E[3] \simeq E'[3]$

 ${\rm Flex}({\cal C})$ and ${\rm Flex}({\cal C}')$ have isomorphic ${\rm Gal}(\overline{k}/k)$ -action

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

•
$$
E' := \text{Jac}(C')
$$
 has $E[3] \simeq E'[3]$

- ${\rm Flex}({\cal C})$ and ${\rm Flex}({\cal C}')$ have isomorphic ${\rm Gal}(\overline{k}/k)$ -action
- C' has a k -rational point.

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

•
$$
E' := \text{Jac}(C')
$$
 has $E[3] \simeq E'[3]$

- ${\rm Flex}({\cal C})$ and ${\rm Flex}({\cal C}')$ have isomorphic ${\rm Gal}(\overline{k}/k)$ -action
- C' has a k -rational point.

Mazur showed that such a C' can always be constructed.

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

•
$$
E' := \text{Jac}(C')
$$
 has $E[3] \simeq E'[3]$

- ${\rm Flex}({\cal C})$ and ${\rm Flex}({\cal C}')$ have isomorphic ${\rm Gal}(\overline{k}/k)$ -action
- C' has a k -rational point.

Mazur showed that such a C' can always be constructed. Hence, σ can be visualized in the abelian surface $(E \times E')/\Delta$,

It suffices to construct a smooth cubic curve C'/k in \mathbb{P}^2 such that

•
$$
E' := \text{Jac}(C')
$$
 has $E[3] \simeq E'[3]$

- ${\rm Flex}({\cal C})$ and ${\rm Flex}({\cal C}')$ have isomorphic ${\rm Gal}(\overline{k}/k)$ -action
- C' has a k -rational point.

Mazur showed that such a C' can always be constructed. Hence, σ can be visualized in the abelian surface $(E \times E')/\Delta$, where Δ denotes the graph of an isomorphism $\lambda : E[3] \rightarrow E'[3].$

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k .

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k . Consider the Hessian of F

$$
H := \begin{vmatrix} \frac{\partial^2 F}{\partial x \partial x} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial y} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z \partial z} \end{vmatrix}
$$

.

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k . Consider the Hessian of F

$$
H := \begin{vmatrix} \frac{\partial^2 F}{\partial x \partial x} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial y} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z \partial z} \end{vmatrix}
$$

.

We have a one parameter family of curves

$$
C_{(s:t)} : sF + tH = 0.
$$

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k . Consider the Hessian of F

$$
H := \begin{vmatrix} \frac{\partial^2 F}{\partial x \partial x} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial y} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z \partial z} \end{vmatrix}
$$

.

We have a one parameter family of curves

$$
C_{(s:t)} : sF + tH = 0.
$$

Smooth members $\mathcal{C}_{(s:t)}$ with $(s:t)\in\mathbb{P}^1(k)$ satisfy:

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k . Consider the Hessian of F

$$
H := \begin{vmatrix} \frac{\partial^2 F}{\partial x \partial x} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial y} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z \partial z} \end{vmatrix}
$$

.

We have a one parameter family of curves

$$
C_{(s:t)} : sF + tH = 0.
$$

Smooth members $\mathcal{C}_{(s:t)}$ with $(s:t)\in\mathbb{P}^1(k)$ satisfy:

•
$$
\text{Flex}(\mathcal{C}_{(s:t)}) = \text{Flex}(\mathcal{C}) = \{F = H = 0\}
$$

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k . Consider the Hessian of F

$$
H := \begin{vmatrix} \frac{\partial^2 F}{\partial x \partial x} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial y} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z \partial z} \end{vmatrix}.
$$

We have a one parameter family of curves

$$
C_{(s:t)} : sF + tH = 0.
$$

Smooth members $\mathcal{C}_{(s:t)}$ with $(s:t)\in\mathbb{P}^1(k)$ satisfy:

\n- Flex
$$
C_{(s:t)}
$$
 = Flex C = { $F = H = 0$ }
\n- Jac $C_{(s:t)}$ [3] \simeq Jac C [3].
\n

Let C be give by $F(x, y, z) = 0$ for a ternary cubic form F/k . Consider the Hessian of F

$$
H := \begin{vmatrix} \frac{\partial^2 F}{\partial x \partial x} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial y} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z \partial z} \end{vmatrix}
$$

.

We have a one parameter family of curves

$$
C_{(s:t)} : sF + tH = 0.
$$

Smooth members $\mathcal{C}_{(s:t)}$ with $(s:t)\in\mathbb{P}^1(k)$ satisfy:

•
$$
\text{Flex}(\mathcal{C}_{(s:t)}) = \text{Flex}(\mathcal{C}) = \{F = H = 0\}
$$

• Jac
$$
(C_{(s:t)})[3] \simeq Jac(C)[3]
$$
.

Now choose C' to be a smooth $C_{(s:t)}$ with a k-rational point.

Principal polarization

 $E \times E'$ is principally polarized via the product polarization.

 $((P, P'), (Q, Q')) \mapsto e_E(P, Q)e_{E'}(P', Q').$

$$
((P,P'),(Q,Q'))\mapsto e_E(P,Q)e_{E'}(P',Q').
$$

The isogeny $E\times E'\to A:=(E\times E')/\Delta$ respect the principal polarization when the Weil paring is trivial on Δ ,

$$
((P,P'),(Q,Q'))\mapsto e_E(P,Q)e_{E'}(P',Q').
$$

The isogeny $E\times E'\to A:=(E\times E')/\Delta$ respect the principal polarization when the Weil paring is trivial on Δ , i.e.

$$
\forall P, Q \in E[3]: \quad e_E(P, Q) = e_{E'}(\lambda(P), \lambda(Q))^{-1}.
$$

$$
((P,P'),(Q,Q'))\mapsto e_E(P,Q)e_{E'}(P',Q').
$$

The isogeny $E\times E'\to A:=(E\times E')/\Delta$ respect the principal polarization when the Weil paring is trivial on Δ , i.e.

$$
\forall P, Q \in E[3]: \quad e_E(P, Q) = e_{E'}(\lambda(P), \lambda(Q))^{-1}.
$$

The isomorphism $\lambda : E[3] \to E'[3]$ coming from Mazur's construction preserves the Weil pairing,

$$
((P, P'), (Q, Q')) \mapsto e_E(P, Q)e_{E'}(P', Q').
$$

The isogeny $E\times E'\to A:=(E\times E')/\Delta$ respect the principal polarization when the Weil paring is trivial on Δ , i.e.

$$
\forall P, Q \in E[3]: \quad e_E(P, Q) = e_{E'}(\lambda(P), \lambda(Q))^{-1}.
$$

The isomorphism $\lambda : E[3] \to E'[3]$ coming from Mazur's construction preserves the Weil pairing, i.e.

$$
\forall P, Q \in E[3]: \quad e_E(P, Q) = e_{E'}(\lambda(P), \lambda(Q)).
$$

• Consider the 9 tangent lines to $Flex(C)$.

- Consider the 9 tangent lines to $Flex(C)$.
- These lines determine 9 points in $(\mathbb{P}^2)^*$.

- Consider the 9 tangent lines to $Flex(C)$.
- These lines determine 9 points in $(\mathbb{P}^2)^*$.
- These points are not flex points of a cubic, so there is a unique cubic C'_0 in $(\mathbb{P}^2)^*$ passing through these points (generically).

- Consider the 9 tangent lines to $Flex(C)$.
- These lines determine 9 points in $(\mathbb{P}^2)^*$.
- These points are not flex points of a cubic, so there is a unique cubic C'_0 in $(\mathbb{P}^2)^*$ passing through these points (generically).
- Using the hessian as before, we construct a one-parameter family of cubics passing through the flex points of C'_0 .

- Consider the 9 tangent lines to $Flex(C)$.
- These lines determine 9 points in $(\mathbb{P}^2)^*$.
- These points are not flex points of a cubic, so there is a unique cubic C'_0 in $(\mathbb{P}^2)^*$ passing through these points (generically).
- Using the hessian as before, we construct a one-parameter family of cubics passing through the flex points of C'_0 .
- Again, we can pick a curve C' from this family that is smooth and has a k-rational point.

- Consider the 9 tangent lines to $Flex(C)$.
- These lines determine 9 points in $(\mathbb{P}^2)^*$.
- These points are not flex points of a cubic, so there is a unique cubic C'_0 in $(\mathbb{P}^2)^*$ passing through these points (generically).
- Using the hessian as before, we construct a one-parameter family of cubics passing through the flex points of C'_0 .
- Again, we can pick a curve C' from this family that is smooth and has a k-rational point.

Fisher: $Jac(C')[3] \simeq Jac(C)[3]$ anti-isometrically.

- Consider the 9 tangent lines to $Flex(C)$.
- These lines determine 9 points in $(\mathbb{P}^2)^*$.
- These points are not flex points of a cubic, so there is a unique cubic C'_0 in $(\mathbb{P}^2)^*$ passing through these points (generically).
- Using the hessian as before, we construct a one-parameter family of cubics passing through the flex points of C'_0 .
- Again, we can pick a curve C' from this family that is smooth and has a k-rational point.

Fisher: $Jac(C')[3] \simeq Jac(C)[3]$ anti-isometrically. Some work: ${\rm Flex}({\mathcal C}),\ {\rm Flex}({\mathcal C}')$ have isomorphic ${\rm Gal}(\overline{k}/k)$ -action.

The genus 2 curve

The genus 2 curve

The genus 2 curve

Make sure that $E := \text{Jac}(C)$ and $E' := \text{Jac}(C')$ are not isogenous, then $A := (E \times E')/\Delta \simeq \mathrm{Jac}(X)$ for a genus 2 Curve $X/k.$ Construction of X:

Consider \mathbb{P}^2 with coordinates $(x : y : z)$ and dual $(\mathbb{P}^2)^*$ with coordinates $(u : v : w)$ describing the line $xu + yv + zw = 0$.

- Consider \mathbb{P}^2 with coordinates $(x : y : z)$ and dual $(\mathbb{P}^2)^*$ with coordinates $(u : v : w)$ describing the line $xu + yv + zw = 0$.
- Embed E' in $(\mathbb{P}^2)^*$ such that all tangent lines through $Flex(E)$ correspond to points on a cubic through $Flex(E')$.

- Consider \mathbb{P}^2 with coordinates $(x : y : z)$ and dual $(\mathbb{P}^2)^*$ with coordinates $(u : v : w)$ describing the line $xu + yv + zw = 0$.
- Embed E' in $(\mathbb{P}^2)^*$ such that all tangent lines through $Flex(E)$ correspond to points on a cubic through $Flex(E')$.
- This gives an embedding $E \times E' \subset \mathbb{P}^2 \times (\mathbb{P}^2)^*$.

- Consider \mathbb{P}^2 with coordinates $(x : y : z)$ and dual $(\mathbb{P}^2)^*$ with coordinates $(u : v : w)$ describing the line $xu + yv + zw = 0$.
- Embed E' in $(\mathbb{P}^2)^*$ such that all tangent lines through $Flex(E)$ correspond to points on a cubic through $Flex(E')$.
- This gives an embedding $E \times E' \subset \mathbb{P}^2 \times (\mathbb{P}^2)^*$.
- On $E \times E'$ we have the genus 10 curve

$$
D: xu+yv+zw=0.
$$

- Consider \mathbb{P}^2 with coordinates $(x : y : z)$ and dual $(\mathbb{P}^2)^*$ with coordinates $(u : v : w)$ describing the line $xu + yv + zw = 0$.
- Embed E' in $(\mathbb{P}^2)^*$ such that all tangent lines through $Flex(E)$ correspond to points on a cubic through $Flex(E')$.
- This gives an embedding $E \times E' \subset \mathbb{P}^2 \times (\mathbb{P}^2)^*$.
- On $E \times E'$ we have the genus 10 curve

$$
D: xu+yv+zw=0.
$$

Frey and Kani: X is the image of D in $(E \times E')/\Delta$.

• The map $[3] \times [3]$ is much more accessible.

• The map $[3] \times [3]$ is much more accessible.

The subgroup of $E[3] \times E'[3]$ under which D is invariant is Δ .

• The map $[3] \times [3]$ is much more accessible.

- The subgroup of $E[3] \times E'[3]$ under which D is invariant is Δ .
- Hence a model for X can be found on $E \times E'$ as $([3] \times [3])(D)$.

- The map $[3] \times [3]$ is much more accessible.
- The subgroup of $E[3] \times E'[3]$ under which D is invariant is Δ .
- Hence a model for X can be found on $E \times E'$ as $([3] \times [3])(D)$.
- This image can easily be computed by interpolation.

Detailed examples:

Detailed examples: See the proceedings ...

Detailed examples: See the proceedings ...

Thank you for your attention.