Visualizing elements of Sha[3] in genus 2
jacobians

Sander Dahmen

Simon Fraser University

Joint work with Nils Bruin



Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k.



Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k.
Two basic arithmetic invariants are



Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k.
Two basic arithmetic invariants are

e the Mordell-Weil group E(k)



Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k.
Two basic arithmetic invariants are

e the Mordell-Weil group E(k)
@ the Shafarevich-Tate group III(E/k).



Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k.
Two basic arithmetic invariants are

e the Mordell-Weil group E(k)
@ the Shafarevich-Tate group III(E/k).
We want to describe elements of III(E/k) explicitly.
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Visualizing elements of 111 in abelian varieties

II(E/k): equivalence classes of principal homogeneous spaces
C/k for E/k with points everywhere locally.

If C/k corresponds to an elements o € III(E/k) of order n > 2,
then it can be represented as a curve of degree n in P"1,
Given an embedding E — A over k of abelian varieties.

We say that o is visible in A, if for some P € A(k)
C~E+PCA

Equivalently, o lies in the kernel of H'(k, E) — Hl(k, A).
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Visualizing elements of III in abelian surfaces

Cremona and Mazur found that for surprisingly many elliptic
curves E/Q with nontrivial odd order elements of III(E/Q), these
element can be visualized inJo(Ng).

Actually, they could be visualized in an abelian surface contained
in the new part of Jo(Ng).

Mazur gave a first theoretical result trying to explain this.

Theorem (Mazur)
If o € I1I(E/k) has order 3, then o is visible in an abelian surface.

How about visibility in jacobians?

Theorem (Bruin & D.)

If o € I1I(E/k) has order 3, then o is visible in the jacobian of a
curve of genus 2.
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Mazur's criterion in tems of Galois cohomology

Let o € III(E/k)[3] and choose & € Sel®)(E/k) mapping to o.
If we can construct an elliptic curve E’/k such that
e there exists an isomorphism of Gal(k/k)-modules

A E[3] — E'[3]
@ § maps to zero under

H' (k. E[3]) — H'(k, E'[3]) — H'(k, E"),

then o is visible in the abelian surface (over k)
A= (E x E))/A
where A denotes the graph of .
So A(k) = {(P,A(P)) : P € E[3](k)}.
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Mazur's criterion very explicitly

Let o € III(E/k)[3] and represent it by a smooth cubic curve C/k
in P2,
It suffices to construct a smooth cubic curve C’/k in P? such that
e E':=Jac(C’) has E[3] ~ E'[3]
e Flex(C) and Flex(C’) have isomorphic Gal(k/k)-action
@ (' has a k-rational point.

Mazur showed that such a C’ can always be constructed.
Hence, o can be visualized in the abelian surface (E x E')/A,
where A denotes the graph of an isomorphism A : E[3] — E'[3].
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Mazur's construction for C’

Let C be give by F(x,y,z) = 0 for a ternary cubic form F/k.
Consider the Hessian of F

O*F  0°F  &PF

0x0x  OxO0y  0x0z

H.— | &F &F O°F
— | 9ydx Oydy Oyoz
O’F 9’F  O°F

0z0x  0z0y  0z0z

We have a one parameter family of curves
C(s:t) :sF+tH=0.

Smooth members C.¢) with (s : t) € P!(k) satisfy:
o Flex(((s.y)) = Flex(C) = {F = H =0}
o Jac(Cs.p))[3] = Jac(C)[3].
Now choose C’ to be a smooth C(s:t) with a k-rational point.
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Principal polarization
E x E’ is principally polarized via the product polarization.
This gives rise to a Weil pairing on (E x E’)[3], given by
((Pv ,D/)’ (Qv Q/)) = eE(Pv Q)eE’(P/a Ql)

The isogeny E x E' — A:= (E x E’)/A respect the principal
polarization when the Weil paring is trivial on A, i.e.

VP,Qe E[3]: ec(P,Q)=ex(NP),NQ)) L.

The isomorphism X : E[3] — E’[3] coming from Mazur’s
construction preserves the Weil pairing, i.e.

VP, Qe E[3]: er(P,Q) = ex(A(P), NQ)).
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Modification of Mazur's construction

Given our plane cubic C we can construct another C’ that does
give rise to a principal polarization on (E x E')/A.

o Consider the 9 tangent lines to Flex(C).

@ These lines determine 9 points in (P?)*.

@ These points are not flex points of a cubic, so there is a unique
cubic C§ in (P?)* passing through these points (generically).

@ Using the hessian as before, we construct a one-parameter
family of cubics passing through the flex points of .

@ Again, we can pick a curve C’ from this family that is smooth
and has a k-rational point.
Fisher: Jac(C’)[3] ~ Jac(C)[3] anti-isometrically.
Some work: Flex(C), Flex(C’) have isomorphic Gal(k/k)-action.



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.
Construction of X:



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.
Construction of X:
o Consider P? with coordinates (x : y : z) and dual (P?)* with
coordinates (v : v : w) describing the line xu + yv + zw = 0.



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.
Construction of X:
o Consider P? with coordinates (x : y : z) and dual (P?)* with
coordinates (v : v : w) describing the line xu + yv + zw = 0.
e Embed E’ in (P?)* such that all tangent lines through
Flex(E) correspond to points on a cubic through Flex(E’).



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.
Construction of X:
o Consider P? with coordinates (x : y : z) and dual (P?)* with
coordinates (v : v : w) describing the line xu + yv + zw = 0.
e Embed E’ in (P?)* such that all tangent lines through
Flex(E) correspond to points on a cubic through Flex(E’).

e This gives an embedding £ x E' C P2 x (P?)*.



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.
Construction of X:

o Consider P? with coordinates (x : y : z) and dual (P?)* with
coordinates (v : v : w) describing the line xu + yv + zw = 0.

e Embed E’ in (P?)* such that all tangent lines through
Flex(E) correspond to points on a cubic through Flex(E’).

e This gives an embedding £ x E' C P2 x (P?)*.

@ On E x E’ we have the genus 10 curve

D:xu+yv+zw =0.



The genus 2 curve

Make sure that E := Jac(C) and E’ := Jac(C’) are not isogenous,
then A:= (E x E')/A ~ Jac(X) for a genus 2 Curve X/k.
Construction of X:

Consider P? with coordinates (x : y : z) and dual (P?)* with
coordinates (v : v : w) describing the line xu + yv + zw = 0.

Embed E’ in (IP?2)* such that all tangent lines through
Flex(E) correspond to points on a cubic through Flex(E’).

This gives an embedding £ x E' C P2 x (P?)*.

On E x E’ we have the genus 10 curve
D:xu+yv+zw =0.

Frey and Kani: X is the image of D in (E x E')/A.
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Constructing the genus 2 curve

DCExE

\

31 [3] X c (E x E')/A

/

ExE
The map [3] x [3] is much more accessible.
The subgroup of E[3] x E’[3] under which D is invariant is A.
Hence a model for X can be found on E x E’ as ([3] x [3])(D).

This image can easily be computed by interpolation.

e 6 o6 o
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Thank you for your attention.



