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Arithmetic invariants of elliptic curves

Consider an elliptic curve E over a number field k.

Two basic arithmetic invariants are

the Mordell-Weil group E (k)

the Shafarevich-Tate group X(E/k).

We want to describe elements of X(E/k) explicitly.
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Visualizing elements of X in abelian varieties

X(E/k): equivalence classes of principal homogeneous spaces
C/k for E/k with points everywhere locally.

If C/k corresponds to an elements σ ∈ X(E/k) of order n > 2,
then it can be represented as a curve of degree n in Pn−1.
Given an embedding E → A over k of abelian varieties.
We say that σ is visible in A, if for some P ∈ A(k)

C 'k E + P ⊂ A.

Equivalently, σ lies in the kernel of H1(k,E ) → H1(k,A).
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Visualizing elements of X in abelian surfaces

Cremona and Mazur found that for surprisingly many elliptic
curves E/Q with nontrivial odd order elements of X(E/Q), these
element can be visualized inJ0(NE ).

Actually, they could be visualized in an abelian surface contained
in the new part of J0(NE ).
Mazur gave a first theoretical result trying to explain this.

Theorem (Mazur)

If σ ∈ X(E/k) has order 3, then σ is visible in an abelian surface.

How about visibility in jacobians?

Theorem (Bruin & D.)

If σ ∈ X(E/k) has order 3, then σ is visible in the jacobian of a
curve of genus 2.
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Mazur’s criterion in tems of Galois cohomology

Let σ ∈ X(E/k)[3] and choose δ ∈ Sel(3)(E/k) mapping to σ.

If we can construct an elliptic curve E ′/k such that

there exists an isomorphism of Gal(k/k)-modules

λ : E [3] → E ′[3]

δ maps to zero under

H1(k,E [3]) → H1(k,E ′[3]) → H1(k,E ′),

then σ is visible in the abelian surface (over k)

A := (E × E ′)/∆

where ∆ denotes the graph of λ.

So ∆(k) = {(P, λ(P)) : P ∈ E [3](k)}.
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Mazur’s criterion very explicitly

Let σ ∈ X(E/k)[3] and represent it by a smooth cubic curve C/k
in P2.

It suffices to construct a smooth cubic curve C ′/k in P2 such that

E ′ := Jac(C ′) has E [3] ' E ′[3]

Flex(C ) and Flex(C ′) have isomorphic Gal(k/k)-action

C ′ has a k-rational point.

Mazur showed that such a C ′ can always be constructed.
Hence, σ can be visualized in the abelian surface (E × E ′)/∆,
where ∆ denotes the graph of an isomorphism λ : E [3] → E ′[3].
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Mazur’s construction for C ′

Let C be give by F (x , y , z) = 0 for a ternary cubic form F/k.

Consider the Hessian of F

H :=

∣∣∣∣∣∣∣
∂2F
∂x∂x

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y∂y

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z∂z

∣∣∣∣∣∣∣ .

We have a one parameter family of curves

C(s:t) : sF + tH = 0.

Smooth members C(s:t) with (s : t) ∈ P1(k) satisfy:

Flex(C(s:t)) = Flex(C ) = {F = H = 0}
Jac(C(s:t))[3] ' Jac(C )[3].

Now choose C ′ to be a smooth C(s:t) with a k-rational point.
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Principal polarization

E × E ′ is principally polarized via the product polarization.

This gives rise to a Weil pairing on (E × E ′)[3], given by(
(P,P ′), (Q,Q ′)

)
7→ eE (P,Q)eE ′(P ′,Q ′).

The isogeny E × E ′ → A := (E × E ′)/∆ respect the principal
polarization when the Weil paring is trivial on ∆, i.e.

∀P,Q ∈ E [3] : eE (P,Q) = eE ′(λ(P), λ(Q))−1.

The isomorphism λ : E [3] → E ′[3] coming from Mazur’s
construction preserves the Weil pairing, i.e.

∀P,Q ∈ E [3] : eE (P,Q) = eE ′(λ(P), λ(Q)).
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Modification of Mazur’s construction

Given our plane cubic C we can construct another C ′ that does
give rise to a principal polarization on (E × E ′)/∆.

Consider the 9 tangent lines to Flex(C ).

These lines determine 9 points in (P2)∗.

These points are not flex points of a cubic, so there is a unique
cubic C ′

0 in (P2)∗ passing through these points (generically).

Using the hessian as before, we construct a one-parameter
family of cubics passing through the flex points of C ′

0.

Again, we can pick a curve C ′ from this family that is smooth
and has a k-rational point.

Fisher: Jac(C ′)[3] ' Jac(C )[3] anti-isometrically.
Some work: Flex(C ), Flex(C ′) have isomorphic Gal(k/k)-action.
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The genus 2 curve

Make sure that E := Jac(C ) and E ′ := Jac(C ′) are not isogenous,
then A := (E × E ′)/∆ ' Jac(X ) for a genus 2 Curve X/k.

Construction of X :

Consider P2 with coordinates (x : y : z) and dual (P2)∗ with
coordinates (u : v : w) describing the line xu + yv + zw = 0.

Embed E ′ in (P2)∗ such that all tangent lines through
Flex(E ) correspond to points on a cubic through Flex(E ′).

This gives an embedding E × E ′ ⊂ P2 × (P2)∗.

On E × E ′ we have the genus 10 curve

D : xu + yv + zw = 0.

Frey and Kani: X is the image of D in (E × E ′)/∆.
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Constructing the genus 2 curve

D ⊂ E × E ′

[3]×[3]

��

**VVVVVVVVVVVVVVVVVV

X ⊂ (E × E ′)/∆

tthhhhhhhhhhhhhhhhhhh

E × E ′

The map [3]× [3] is much more accessible.

The subgroup of E [3]× E ′[3] under which D is invariant is ∆.

Hence a model for X can be found on E ×E ′ as ([3]× [3])(D).

This image can easily be computed by interpolation.



Constructing the genus 2 curve

D ⊂ E × E ′

[3]×[3]

��

**VVVVVVVVVVVVVVVVVV

X ⊂ (E × E ′)/∆

tthhhhhhhhhhhhhhhhhhh

E × E ′

The map [3]× [3] is much more accessible.

The subgroup of E [3]× E ′[3] under which D is invariant is ∆.

Hence a model for X can be found on E ×E ′ as ([3]× [3])(D).

This image can easily be computed by interpolation.



Constructing the genus 2 curve

D ⊂ E × E ′

[3]×[3]

��

**VVVVVVVVVVVVVVVVVV

X ⊂ (E × E ′)/∆

tthhhhhhhhhhhhhhhhhhh

E × E ′

The map [3]× [3] is much more accessible.

The subgroup of E [3]× E ′[3] under which D is invariant is ∆.

Hence a model for X can be found on E ×E ′ as ([3]× [3])(D).

This image can easily be computed by interpolation.



Constructing the genus 2 curve

D ⊂ E × E ′

[3]×[3]

��

**VVVVVVVVVVVVVVVVVV

X ⊂ (E × E ′)/∆

tthhhhhhhhhhhhhhhhhhh

E × E ′

The map [3]× [3] is much more accessible.

The subgroup of E [3]× E ′[3] under which D is invariant is ∆.

Hence a model for X can be found on E ×E ′ as ([3]× [3])(D).

This image can easily be computed by interpolation.



Constructing the genus 2 curve

D ⊂ E × E ′

[3]×[3]

��

**VVVVVVVVVVVVVVVVVV

X ⊂ (E × E ′)/∆

tthhhhhhhhhhhhhhhhhhh

E × E ′

The map [3]× [3] is much more accessible.

The subgroup of E [3]× E ′[3] under which D is invariant is ∆.

Hence a model for X can be found on E ×E ′ as ([3]× [3])(D).

This image can easily be computed by interpolation.



Fin

Detailed examples:

See the proceedings . . .

Thank you for your attention.



Fin

Detailed examples: See the proceedings . . .

Thank you for your attention.



Fin

Detailed examples: See the proceedings . . .

Thank you for your attention.


