On the Use of the Negation Map in the Pollard Rho Method

Joppe W. Bos Thorsten Kleinjung Arjen K. Lenstra

Laboratory for Cryptologic Algorithms EPFL, Station 14, CH-1015 Lausanne, Switzerland

Study the negation map in practice when solving the elliptic curve discrete logarithm problem over prime fields.

Cryptography

- The Suite B Cryptography by the NSA allows elliptic curves over prime fields only.
- Solve ECDLPs fast \rightarrow break ECC-based schemes.

Using the (parallelized) Pollard ρ method

- 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
- the recent (2009) 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map ($\sqrt{2}$ speed-up) (not used in any of the prime ECDLP records)

The Elliptic Curve Discrete Logarithm Problem

Let p be an odd prime and $E(\mathbf{F}_p)$ an elliptic curve over \mathbf{F}_p . Given $\mathfrak{g} \in E(\mathbf{F}_p)$ of prime order q and $\mathfrak{h} \in \langle \mathfrak{g} \rangle$ find $m \in \mathbf{Z}$ such that $m\mathfrak{g} = \mathfrak{h}$.

Believed to be a hard problem (of order \sqrt{q}). Algorithms to solve ECDLP: Baby-step Giant-step, Pollard ρ , Pollard Kangaroo

Basic Idea

Pick random objects: $u\mathfrak{g} + v\mathfrak{h} \in \langle \mathfrak{g} \rangle$ $(u, v \in \mathbb{Z})$ Find duplicate / collision: $u\mathfrak{g} + v\mathfrak{h} = \overline{u}\mathfrak{g} + \overline{v}\mathfrak{h}$. If $\overline{v} \not\equiv v \mod q$, $m = \frac{u-\overline{u}}{\overline{v}-v} \mod q$ solves the discrete logarithm problem. Expected number of random objects: $\sqrt{\pi q/2}$ Approximate random walk in $\langle \mathfrak{g} \rangle$. Index function $\ell : \langle \mathfrak{g} \rangle = \mathfrak{G}_0 \cup \ldots \cup \mathfrak{G}_{t-1} \mapsto [0, t-1]$ $\mathfrak{G}_i = \{\mathfrak{x} : \mathfrak{x} \in \langle \mathfrak{g} \rangle, \ell(\mathfrak{x}) = i\}, \qquad |\mathfrak{G}_i| \approx \frac{q}{t}$ Precomputed partition constants: $\mathfrak{f}_0, \ldots, \mathfrak{f}_{t-1} \in \langle \mathfrak{g} \rangle$ With $\mathfrak{f}_i = u_i \mathfrak{g} + v_i \mathfrak{h}$.

r-adding walk	r + s-mixed walk	
t = r	t = r + s	
$\mathfrak{p}_{i+1} = \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}$	$ \mathfrak{p}_{i+1} = \begin{cases} \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}, \\ 2\mathfrak{p}_i, \end{cases} $	if $0 \le \ell(\mathfrak{p}_i) < r$ if $\ell(\mathfrak{p}_i) \ge r$

[Teske-01]: r=20 performance close to a random walk.

[Wiener, Zuccherato-98]

Equivalence relation \sim on $\langle \mathfrak{g} \rangle$ by $\mathfrak{p} \sim -\mathfrak{p}$ for $\mathfrak{p} \in \langle \mathfrak{g} \rangle$.

Instead of searching $\langle \mathfrak{g} \rangle$ of size *q* search $\langle \mathfrak{g} \rangle /\!\!\sim$ of size about $\frac{q}{2}$ for collisions.

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. **Efficient to compute:** Given $(x, y) \in \langle \mathfrak{g} \rangle \rightarrow -(x, y) = (x, -y)$

[Duursma, Gaudry, Morain-99], [Gallant, Lambert, Vanstone-00]

For Koblitz curves the Frobenius automorphism of a degree t binary extension field leads to a further \sqrt{t} -fold speedup.

Well-known disadvantage: as presented no solution to large ECDLPs

Well-known disadvantage: fruitless cycles

$$\mathfrak{p} \xrightarrow{(i,-)} -(\mathfrak{p} + \mathfrak{f}_i) \xrightarrow{(i,-)} \mathfrak{p}.$$

At any step in the walk the probability to enter a fruitless 2-cycle is $\frac{1}{2r}$ [Duursma,Gaudry,Morain-99] (Proposition 31)

Well-known disadvantage: fruitless cycles

$$\mathfrak{p} \stackrel{(i,-)}{\longrightarrow} -(\mathfrak{p} + \mathfrak{f}_i) \stackrel{(i,-)}{\longrightarrow} \mathfrak{p}.$$

At any step in the walk the probability to enter a fruitless 2-cycle is $\frac{1}{2r}$ [Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener, Zuccherato-98]

$$f(\mathfrak{p}) = \begin{cases} E(\mathfrak{p}) & \text{if } j = \ell(\sim(\mathfrak{p} + \mathfrak{f}_j)) \text{ for } 0 \leq j < r \\ \sim(\mathfrak{p} + \mathfrak{f}_i) & \text{with } i \geq \ell(\mathfrak{p}) \text{ minimal s.t. } \ell(\sim(\mathfrak{p} + \mathfrak{f}_i)) \neq i \text{ mod } r. \end{cases}$$

once every r^r steps: $E : \langle \mathfrak{g} \rangle \to \langle \mathfrak{g} \rangle$ may restart the walk Cost increase $c = \sum_{i=0}^r \frac{1}{r^i}$ with $1 + \frac{1}{r} \le c \le 1 + \frac{1}{r-1}$.

Dealing With Fruitless Cycles In General [Gallant,Lambert,Vanstone-00]

Cycle Escaping

Add

- $\mathfrak{f}_{\ell(\mathfrak{p})+c}$ for a fixed $c \in \mathbf{Z}$
- a precomputed value f'
- $\mathfrak{f}''_{\ell(\mathfrak{p})}$ from a distinct list of *r* precomputed values $\mathfrak{f}''_0, \mathfrak{f}''_1, \ldots, \mathfrak{f}''_{r-1}$

to a representative element of this cycle.

2-cycles When Using The 2-cycle Reduction Technique

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce 2-cycles while using an r-adding walk is

$$\frac{1}{2r}\left(\sum_{i=1}^{r-1}\frac{1}{r^{i}}\right)^{2} = \frac{(r^{r-1}-1)^{2}}{2r^{2r-1}(r-1)^{2}} = \frac{1}{2r^{3}} + O\left(\frac{1}{r^{4}}\right)$$

$$\mathfrak{p} \xrightarrow{(i,+)} \mathfrak{p} + \mathfrak{f}_i \xrightarrow{(j,-)} -\mathfrak{p} - \mathfrak{f}_i - \mathfrak{f}_j \xrightarrow{(i,+)} -\mathfrak{p} - \mathfrak{f}_j \xrightarrow{(j,-)} \mathfrak{p}.$$

Fruitless 4-cycle starts with probability $\frac{r-1}{4r^3}$.

$$\mathfrak{p} \xrightarrow{(i,+)} \mathfrak{p} + \mathfrak{f}_i \xrightarrow{(j,-)} -\mathfrak{p} - \mathfrak{f}_i - \mathfrak{f}_j \xrightarrow{(i,+)} -\mathfrak{p} - \mathfrak{f}_j \xrightarrow{(j,-)} \mathfrak{p}.$$

Fruitless 4-cycle starts with probability $\frac{r-1}{4r^3}$. Extend the 2-cycle reduction method to reduce 4-cycles:

$$g(\mathfrak{p}) = \begin{cases} \mathcal{E}(\mathfrak{p}) & \text{if } j \in \{\ell(\mathfrak{q}), \ell(\sim(\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})}))\} \text{ or } \ell(\mathfrak{q}) = \ell(\sim(\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})})) \\ & \text{where } \mathfrak{q} = \sim(\mathfrak{p} + \mathfrak{f}_j), \text{ for } 0 \leq j < r, \\ \mathfrak{q} = \sim(\mathfrak{p} + \mathfrak{f}_i) \text{ with } i \geq \ell(\mathfrak{p}) \text{ minimal s.t.} \\ & i \text{ mod } r \neq \ell(\mathfrak{q}) \neq \ell(\sim(\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})})) \neq i \text{ mod } r. \end{cases}$$

Disadvantage: more expensive iteration function: $\geq \frac{r+4}{r}$ **Advantage:** positive effect of $\sqrt{\frac{r-1}{r}}$ since

 $\operatorname{image}(g) \subset \langle \mathfrak{g} \rangle$ with $\operatorname{image}(g) | \approx \frac{r-1}{r} |\langle \mathfrak{g} \rangle|$.

Example: 4-cycle With 4-cycle reduction

$$\begin{split} \ell(\sim(\tilde{\mathfrak{p}} + \mathfrak{f}_k)) &\in \{i, k\} \bigoplus_{\substack{(k, ...)\\ (k, ...)\\ \tilde{\mathfrak{p}} = \sim(\mathfrak{p} + \mathfrak{f}_i) \bigoplus_{\substack{(j, ...)\\ (j + 1, -)\\ (i + 1, +)\\ \mathfrak{p} + \mathfrak{f}_{i+1} \bigoplus_{\substack{(j + 1, -)\\ (j, ...)\\ (j + 1, -)\\ (j, ...)\\ \tilde{\mathfrak{p}} = \sim(\mathfrak{p} + \mathfrak{f}_{i+1} + \mathfrak{f}_j) \bigoplus_{\substack{(j + 1, -)\\ (l, ...)\\ \ell(\sim(\bar{\mathfrak{p}} + \mathfrak{f}_l)) \in \{j, l\}} \bigoplus_{\substack{(j + 1, -)\\ (l, ...)\\ \tilde{\mathfrak{p}}} = \ell(\mathfrak{p} - \mathfrak{p} - \mathfrak{f}_{i+1} - \mathfrak{f}_{j+1} + \mathfrak{f}_i) = \bar{\mathfrak{q}} \\ \ell(\sim(\bar{\mathfrak{q}} + \mathfrak{f}_m)) \in \{i, m\} \\ \frac{r - 1}{4r^3} \text{ reduced to} \geq \frac{4(r - 2)^4(r - 1)}{r^{11}} \end{split}$$

10/15

Large *r*-adding Walks

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r?

Large *r*-adding Walks

- Probability to enter cycle depends on the number of partitions r
 W/L matching language 2
- Why not simply increase r?

- Practical performance penalty (cache-misses)
- Fruitless cycles still occur

Recurring Cycles

Using

- *r*-adding walk with a medium sized *r* and
- { 2, 4 }-reduction technique and
- cycle escaping techniques

it is still very unlikely to solve any large ECDLP.

Recurring Cycles

Using

- r-adding walk with a medium sized r and
- { 2, 4 }-reduction technique and
- cycle escaping techniques

it is still very unlikely to solve any large ECDLP.

Reduce the number of fruitless (recurring) cycles by using a mixed-walk

- a cycle with at least one doubling is most likely not fruitless
- doublings are more expensive than additions

Use doublings to escape cycles, eliminates recurring cycles.

$$\bar{f}(\mathfrak{p}) = \begin{cases} \sim (\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})}) & \text{if } \ell(\mathfrak{p}) \neq \ell(\sim (\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})})), \\ \sim (2\mathfrak{p}) & \text{otherwise,} \end{cases}$$

$$\bar{g}(\mathfrak{p}) = \begin{cases} \mathfrak{q} = \sim (\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})}) & \text{if } \ell(\mathfrak{q}) \neq \ell(\mathfrak{p}) \neq \ell(\sim (\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})})) \neq \ell(\mathfrak{q}), \\ \sim (2\mathfrak{p}) & \text{otherwise.} \end{cases}$$

	<i>r</i> = 16 <i>r</i> =		32	32 <i>r</i> = 64		<i>r</i> = 128		<i>r</i> = 256		<i>r</i> = 512		
Without negation map												
	7.29:	0.98	7.28:	0.99	7.27 :	1.00	7.19:	0.99	6.97:	0.96	6.78:	0.94
With negation map												
just g	0.00:	0.00	0.00:	0.00	0.00:	0.00	0.00:	0.00	0.04:	0.01	3.59:	0.70
just ē	3.34:	0.64	4.89:	0.95	5.85:	1.14	6.10:	1.19	6.28:	1.23	6.18:	1.21
<i>f</i> , e	0.00:	0.00	0.00:	0.00	1.52:	0.30	5.93:	1.16	6.47:	1.27	6.36:	1.25
<i>f</i> ,ē	3.71:	0.72	6.36:	1.24	6.50:	1.27	6.57:	1.29	6.47:	1.27	6.30:	1.25
<i>g</i> , e	0.00:	0.00	0.01:	0.00	4.89:	0.96	6.22:	1.22	6.23:	1.22	6.05:	1.19
g, ē	0.76:	0.15	5.91:	1.17	6.02:	1.18	6.25:	1.23	6.13:	1.20	6.00:	1.18

Conclusions

Using the negation map optimization technique for solving prime ECDLPs is useful in practice when

- { 2, 4 }-cycle reduction techniques are used
- recurring cycles are avoided; e.g. escaping by doubling
- medium sized r-adding walk (r = 128) are used

Using all this we managed to get a speedup of at most:

$$1.29 < \sqrt{2} \ (\approx 1.41)$$

More details and experiments in the article.

Future Work

Better cycle reduction or escaping techniques? Faster implementations? Can we do better than 1.29 speedup?