Improvements to ideal class group and regulator computation in real quadratic number fields

Jean-François Biasse¹, Michael J. Jacobson Jr² ¹École polytechnique, ²University of Calgary

ANTS IX

Let $\mathbb K$ be a quadratic number field of discrimiant Δ and maximal order $\mathcal O_\Delta.$ We are interested in

• Computing the group structure of $\operatorname{Cl}(\Delta) := \operatorname{Cl}(\mathcal{O}_{\Delta})$.

Let $\mathbb K$ be a quadratic number field of discrimiant Δ and maximal order $\mathcal O_\Delta.$ We are interested in

- Computing the group structure of $\operatorname{Cl}(\Delta) := \operatorname{Cl}(\mathcal{O}_{\Delta}).$
- Computing the regulator R_{Δ} of \mathbb{K} .

Let $\mathbb K$ be a quadratic number field of discrimiant Δ and maximal order $\mathcal O_\Delta.$ We are interested in

- Computing the group structure of $\operatorname{Cl}(\Delta) := \operatorname{Cl}(\mathcal{O}_{\Delta}).$
- Computing the regulator R_{Δ} of \mathbb{K} .
- Computing a compact representation of the fundamental unit $\varepsilon_{\Delta}.$

Let $\mathbb K$ be a quadratic number field of discrimiant Δ and maximal order $\mathcal O_\Delta.$ We are interested in

- Computing the group structure of $\operatorname{Cl}(\Delta) := \operatorname{Cl}(\mathcal{O}_{\Delta}).$
- Computing the regulator R_{Δ} of \mathbb{K} .
- Computing a compact representation of the fundamental unit ε_{Δ} .

We provide practical improvements to the classical subexponential algorithms.

Let $\mathbb K$ be a quadratic number field of discrimiant Δ and maximal order $\mathcal O_\Delta.$ We are interested in

- Computing the group structure of $\operatorname{Cl}(\Delta) := \operatorname{Cl}(\mathcal{O}_{\Delta}).$
- Computing the regulator R_{Δ} of \mathbb{K} .
- Computing a compact representation of the fundamental unit ε_{Δ} .

We provide practical improvements to the classical subexponential algorithms.

We achieve the computation of $\mathrm{Cl}(\Delta)$ and R_{Δ} for a 110-digit discriminant.

Outline

2 Classical Algorithms

• We work in $\mathbb K$ that satisfies $[\mathbb K:\mathbb Q]=2.$

Ideals

- We work in $\mathbb K$ that satisfies $[\mathbb K:\mathbb Q]=2.$
- Let \mathcal{O}_Δ be the ring of integers of $\mathbb K$ and Δ its discriminant.

Ideals

- We work in $\mathbb K$ that satisfies $[\mathbb K:\mathbb Q]=2.$
- Let \mathcal{O}_{Δ} be the *ring of integers* of \mathbb{K} and Δ its discriminant.
- If $\Delta < 0$: imaginary case. If $\Delta > 0$: real case.

Ideals

- We work in $\mathbb K$ that satisfies $[\mathbb K:\mathbb Q]=2.$
- Let \mathcal{O}_{Δ} be the *ring of integers* of \mathbb{K} and Δ its discriminant.
- If $\Delta < 0$: imaginary case. If $\Delta > 0$: real case.
- The fractional ideals \mathfrak{a} are the sets of the form

$$rac{1}{d}\mathfrak{a}', \mid \; d \in \mathbb{K}, \;\; \mathfrak{a}' \; ext{is an ideal of} \; \mathcal{O}_\Delta.$$

• Let $\mathcal{I}(\Delta)$ be the invertible fractional ideals and $\mathcal P$ the principal ideals, then

$$\operatorname{Cl}(\Delta) := \mathcal{I}(\Delta)/\mathcal{P}.$$

• Let $\mathcal{I}(\Delta)$ be the invertible fractional ideals and $\mathcal P$ the principal ideals, then

$$\operatorname{Cl}(\Delta) := \mathcal{I}(\Delta)/\mathcal{P}.$$

• $Cl(\Delta)$ is finite of cardinality $h(\Delta)$.

• Let $\mathcal{I}(\Delta)$ be the invertible fractional ideals and $\mathcal P$ the principal ideals, then

$$\operatorname{Cl}(\Delta) := \mathcal{I}(\Delta)/\mathcal{P}.$$

- $Cl(\Delta)$ is finite of cardinality $h(\Delta)$.
- $h(\Delta)$ is essentially as "hard" to compute as $Cl(\Delta)$.

• Let $\mathcal{I}(\Delta)$ be the invertible fractional ideals and $\mathcal P$ the principal ideals, then

$$\operatorname{Cl}(\Delta) := \mathcal{I}(\Delta)/\mathcal{P}.$$

- $\operatorname{Cl}(\Delta)$ is finite of cardinality $h(\Delta)$.
- $h(\Delta)$ is essentially as "hard" to compute as $Cl(\Delta)$.

Let $\mathfrak{a}, \mathfrak{b} \in \mathcal{I}(\Delta)$, then we denote by $\mathfrak{a} \sim \mathfrak{b}$:

$$[\mathfrak{a}] = [\mathfrak{b}] \in \mathrm{Cl}(\Delta) \Leftrightarrow \exists \alpha \in \mathbb{K}, \ \mathfrak{a} = (\alpha)\mathfrak{b}.$$

Regulat<u>or</u>

We assume that $\Delta>0.$

We assume that $\Delta > 0$.

• Elements of \mathbb{K} such that $\mathcal{N}(x) = \pm 1$ are *units*.

We assume that $\Delta > 0$.

- Elements of $\mathbb K$ such that $\mathcal N(x) = \pm 1$ are *units*.
- Every unit ε can be written as ε = ±εⁿ_Δ, where ε_Δ is the fundamental unit of K.

We assume that $\Delta > 0$.

- Elements of \mathbb{K} such that $\mathcal{N}(x) = \pm 1$ are *units*.
- Every unit ε can be written as ε = ±εⁿ_Δ, where ε_Δ is the fundamental unit of K.

The *regulator* of \mathbb{K} is

 $R_{\Delta} = \log \varepsilon_{\Delta}.$

We assume that $\Delta > 0$.

- Elements of \mathbb{K} such that $\mathcal{N}(x) = \pm 1$ are *units*.
- Every unit ε can be written as ε = ±εⁿ_Δ, where ε_Δ is the fundamental unit of K.

The *regulator* of \mathbb{K} is

$$R_{\Delta} = \log \varepsilon_{\Delta}.$$

Every unit ε satisfies $\exists n$, $\log |\varepsilon| = nR_{\Delta}$.

Outline

3 Practical improvements

The algorithms for solving our problems follow the same pattern. Let $\mathcal{B} = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_N\}$ be a generating set of $\mathrm{Cl}(\Delta)$.

The algorithms for solving our problems follow the same pattern. Let $\mathcal{B} = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_N\}$ be a generating set of $\mathrm{Cl}(\Delta)$.

Find relations of the form

$$(\alpha) = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_N^{e_N},$$

that is $\prod_{i} [p_i]^{e_i} = [1]$

The algorithms for solving our problems follow the same pattern. Let $\mathcal{B} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}$ be a generating set of $\operatorname{Cl}(\Delta)$.

Find relations of the form

$$(\alpha) = \mathfrak{p}_1^{\mathbf{e}_1} \cdots \mathfrak{p}_N^{\mathbf{e}_N},$$

that is $\prod_{i} [p_i]^{e_i} = [1]$

2 Every time a relation is found, $[e_1, \ldots, e_N]$ is added as a row of the *relation matrix* M

The algorithms for solving our problems follow the same pattern. Let $\mathcal{B} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}$ be a generating set of $Cl(\Delta)$.

Find relations of the form

$$(\alpha) = \mathfrak{p}_1^{\mathbf{e}_1} \cdots \mathfrak{p}_N^{\mathbf{e}_N},$$

that is $\prod_{i} [p_i]^{e_i} = [1]$

- 2 Every time a relation is found, $[e_1, \ldots, e_N]$ is added as a row of the *relation matrix* M
- **③** Perform a *linear algebra phase* on *M*.

Complexity

We define the subexponential function by

$$\mathcal{L}_{\Delta}(\alpha,\beta) = e^{\beta \log |\Delta|^{\alpha} \log \log |\Delta|^{1-\alpha}}.$$

Outline	Introduction	Classical Algorithms	Practical improvements
Complexity			

We define the *subexponential* function by

$$\mathcal{L}_{\Delta}(lpha,eta)=e^{eta\log|\Delta|^lpha\log\log|\Delta|^{1-lpha}}.$$

For $\alpha \in [0, 1]$, $L_{\Delta}(\alpha, \beta)$ is between exponential and polynomial in $\log |\Delta|$ since

$$egin{aligned} & L_\Delta(0,eta) = \log |\Delta|^eta, \ & L_\Delta(1,eta) = |\Delta|^eta. \end{aligned}$$

Outline	Introduction	Classical Algorithms	Practical improvements
Complexity			

We define the subexponential function by

$$\mathcal{L}_{\Delta}(lpha,eta) = e^{eta \log |\Delta|^{lpha} \log \log |\Delta|^{1-lpha}}.$$

For $\alpha \in [0,1]$, $L_{\Delta}(\alpha,\beta)$ is between exponential and polynomial in $\log |\Delta|$ since

$$L_{\Delta}(0, eta) = \log |\Delta|^{eta},$$

 $L_{\Delta}(1, eta) = |\Delta|^{eta}.$

Our problems for qudratic number fields have complexity

 $L_{\Delta}(1/2, c),$

where c depends on the linear algebra phase.

Outline	Introduction	Classical Algorithms	Practical improvements
The factor h	ase		

We fill the factor base with invertible **prime ideals** \mathfrak{p} . There is p prime such that

$$\mathfrak{p}\cap\mathbb{Z}=(p)$$
 and $\mathcal{N}(\mathfrak{p})=p.$

111111000			1
	•		
Juline	L.	u	_

The factor base

We fill the factor base with invertible **prime ideals** \mathfrak{p} . There is p prime such that

$$\mathfrak{p}\cap\mathbb{Z}=(p)$$
 and $\mathcal{N}(\mathfrak{p})=p.$

Let B a bound, we define

$$\mathcal{B} := \{\mathfrak{p} \text{ invertible prime } | \mathcal{N}(\mathfrak{p}) \leq B\} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}.$$

111111000			1
	•		
Juline	L.	u	_

The factor base

We fill the factor base with invertible **prime ideals** \mathfrak{p} . There is p prime such that

$$\mathfrak{p}\cap\mathbb{Z}=(p)$$
 and $\mathcal{N}(\mathfrak{p})=p.$

Let B a bound, we define

 $\mathcal{B} := \{\mathfrak{p} \text{ invertible prime } | \mathcal{N}(\mathfrak{p}) \leq B\} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}.$

Under ERH, if $B > 6 \log^2 |\Delta|$, then \mathcal{B} generates $\operatorname{Cl}(\Delta)$, and the lattice \mathcal{L} of the relations satisfies

 $\operatorname{Cl}(\Delta) \simeq \mathbb{Z}^N / \mathcal{L}.$

The factor base

We fill the factor base with invertible **prime ideals** \mathfrak{p} . There is p prime such that

$$\mathfrak{p}\cap\mathbb{Z}=(p)$$
 and $\mathcal{N}(\mathfrak{p})=p.$

Let B a bound, we define

 $\mathcal{B} := \{\mathfrak{p} \text{ invertible prime } | \mathcal{N}(\mathfrak{p}) \leq B\} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}.$

Under ERH, if $B > 6 \log^2 |\Delta|$, then \mathcal{B} generates $\operatorname{Cl}(\Delta)$, and the lattice \mathcal{L} of the relations satisfies

$$\operatorname{Cl}(\Delta) \simeq \mathbb{Z}^N / \mathcal{L}.$$

We have $(\mathfrak{a} \text{ is } \mathcal{B}\text{-smooth}) \Leftrightarrow (\mathcal{N}(\mathfrak{a}) \text{ is } \mathcal{B}\text{-smooth}).$

Hermite Normal Form

Invertible operations on rows lead to the **Hermite Normal Form** H of M:

where $\forall i > j : 0 \leq h_{ij} < h_{jj}$.

Hermite Normal Form

Invertible operations on rows lead to the **Hermite Normal Form** H of M:

where $\forall i > j : 0 \leq h_{ij} < h_{jj}$.

Upper left : Essential part

Smith Normal Form (SNF) and class group structure

Any matrix $A \in \mathbb{Z}^{n \times n}$ with non zero determinant can be written as :

$$A = V^{-1} \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_n \end{pmatrix} U^{-1}$$

where $\forall i$ such that $1 \leq i < n : d_{i+1}|d_i$.
Smith Normal Form (SNF) and class group structure

Any matrix $A \in \mathbb{Z}^{n \times n}$ with non zero determinant can be written as :

$$A = V^{-1} \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_n \end{pmatrix} U^{-1}$$

where $\forall i$ such that $1 \leq i < n : d_{i+1} | d_i$.

If (d_i) are the diagonal coefficients of the SNF of the essential part of H then

$$\mathit{Cl}(\Delta) = igoplus_{1 \leq i \leq n} (\mathbb{Z}/d_i\mathbb{Z})$$

Several implementation of HNF algorithm exist : Pari, Kash, Sage, Magma, NTL \dots We used an NTL/Linbox-based strategy.

Several implementation of HNF algorithm exist : Pari, Kash, Sage, Magma, NTL \ldots We used an NTL/Linbox-based strategy.

Let $M \in \mathbb{Z}^{N' \times N}$ be the relation matrix.

• Extract two random $N \times N$ full-rank submatrices M_1 and M_2 of M.

Several implementation of HNF algorithm exist : Pari, Kash, Sage, Magma, NTL \ldots We used an NTL/Linbox-based strategy.

Let $M \in \mathbb{Z}^{N' \times N}$ be the relation matrix.

- Extract two random $N \times N$ full-rank submatrices M_1 and M_2 of M.
- Compute $h_1 \leftarrow \det(M_1)$ and $h_2 \leftarrow \det(M_2)$ with function det of linbox.

Several implementation of HNF algorithm exist : Pari, Kash, Sage, Magma, NTL \ldots We used an NTL/Linbox-based strategy.

Let $M \in \mathbb{Z}^{N' \times N}$ be the relation matrix.

- Extract two random $N \times N$ full-rank submatrices M_1 and M_2 of M.
- Compute $h_1 \leftarrow \det(M_1)$ and $h_2 \leftarrow \det(M_2)$ with function det of linbox.
- Let $h := \operatorname{gcd}(h_1, h_2)$. It is a multiple of h_{Δ} .

Several implementation of HNF algorithm exist : Pari, Kash, Sage, Magma, NTL \ldots We used an NTL/Linbox-based strategy.

Let $M \in \mathbb{Z}^{N' \times N}$ be the relation matrix.

- Extract two random $N \times N$ full-rank submatrices M_1 and M_2 of M.
- Compute $h_1 \leftarrow \det(M_1)$ and $h_2 \leftarrow \det(M_2)$ with function det of linbox.
- Let $h := \operatorname{gcd}(h_1, h_2)$. It is a multiple of h_{Δ} .
- Call the implementation of DomKanTro87 modular HNF algorithm with (M, h).

Several implementation of HNF algorithm exist : Pari, Kash, Sage, Magma, NTL \ldots We used an NTL/Linbox-based strategy.

Let $M \in \mathbb{Z}^{N' \times N}$ be the relation matrix.

- Extract two random $N \times N$ full-rank submatrices M_1 and M_2 of M.
- Compute $h_1 \leftarrow \det(M_1)$ and $h_2 \leftarrow \det(M_2)$ with function det of linbox.
- Let $h := \operatorname{gcd}(h_1, h_2)$. It is a multiple of h_{Δ} .
- Call the implementation of DomKanTro87 modular HNF algorithm with (M, h).

In fact MAGMA is much faster :(\Rightarrow room for improvement.

Let $M = (m_{ij}) \in \mathbb{Z}^{N' \times N}$, be the relation matrix, $\mathcal{B} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}$, and

$$(\alpha_i) = \mathfrak{p}_1^{m_{i1}} \cdots \mathfrak{p}_N^{m_{N1}}.$$

Let $M = (m_{ij}) \in \mathbb{Z}^{N' \times N}$, be the relation matrix, $\mathcal{B} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}$, and

$$(\alpha_i) = \mathfrak{p}_1^{m_{i1}} \cdots \mathfrak{p}_N^{m_{N1}}.$$

Let $X = (x_i)$, $i \leq N'$ be a kernel vector of M. Then

$$\gamma := \alpha_1^{x_1} \cdots \alpha_{N'}^{x_{N'}}$$

is a unit since $(\gamma) = \prod_i \alpha_i^{x_i} = (1)$.

Let $M = (m_{ij}) \in \mathbb{Z}^{N' \times N}$, be the relation matrix, $\mathcal{B} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}$, and

$$(\alpha_i) = \mathfrak{p}_1^{m_{i1}} \cdots \mathfrak{p}_N^{m_{N1}}.$$

Let $X = (x_i)$, $i \leq N'$ be a kernel vector of M. Then

$$\gamma := \alpha_1^{x_1} \cdots \alpha_{N'}^{x_{N'}}$$

is a unit since $(\gamma) = \prod_i \alpha_i^{x_i} = (1)$.

There is *n* such that

$$\log |\gamma| = nR_{\Delta}$$

Let $M = (m_{ij}) \in \mathbb{Z}^{N' \times N}$, be the relation matrix, $\mathcal{B} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_N\}$, and

$$(\alpha_i) = \mathfrak{p}_1^{m_{i1}} \cdots \mathfrak{p}_N^{m_{N1}}.$$

Let $X = (x_i)$, $i \leq N'$ be a kernel vector of M. Then

$$\gamma := \alpha_1^{x_1} \cdots \alpha_{N'}^{x_{N'}}$$

is a unit since $(\gamma) = \prod_i \alpha_i^{x_i} = (1)$.

There is *n* such that

$$\log |\gamma| = nR_{\Delta}$$

Each kernel vector of M yields a multiple of R_{Δ} . We recover R_{Δ} by successive real-GCD computation.

Outline

2 Classical Algorithms

Let \mathfrak{a} be an ideal. There is $\mathfrak{a}' \sim \mathfrak{a}$ of the form $\mathfrak{a}' = a\mathbb{Z} + \frac{(b+\sqrt{\Delta})}{2}\mathbb{Z}$.

Let \mathfrak{a} be an ideal. There is $\mathfrak{a}' \sim \mathfrak{a}$ of the form $\mathfrak{a}' = a\mathbb{Z} + \frac{(b+\sqrt{\Delta})}{2}\mathbb{Z}$. Then for each x, y we have

$$\gamma := \mathsf{a} \mathsf{x} + \mathsf{y}\left(\frac{\mathsf{b} + \sqrt{\Delta}}{2}\right) \in \mathfrak{a}'.$$

Outline

Introduction

Classical Algorithms

Practical improvements

Relation collection via sieving

Let \mathfrak{a} be an ideal. There is $\mathfrak{a}' \sim \mathfrak{a}$ of the form $\mathfrak{a}' = a\mathbb{Z} + \frac{(b+\sqrt{\Delta})}{2}\mathbb{Z}$. Then for each x, y we have

$$\gamma := ax + y\left(rac{b + \sqrt{\Delta}}{2}
ight) \in \mathfrak{a}'.$$

(JacWil09) There is an ideal $\mathfrak b$ such that $(\gamma)=\mathfrak a'\mathfrak b$ (that is $\mathfrak a\cdot\mathfrak b\sim 1)$ and

$$\mathcal{N}(\mathfrak{b}) = ax^2 + bxy + cy^2.$$

Let \mathfrak{a} be an ideal. There is $\mathfrak{a}' \sim \mathfrak{a}$ of the form $\mathfrak{a}' = a\mathbb{Z} + \frac{(b+\sqrt{\Delta})}{2}\mathbb{Z}$. Then for each x, y we have

$$\gamma := ax + y\left(rac{b + \sqrt{\Delta}}{2}
ight) \in \mathfrak{a}'.$$

(JacWil09) There is an ideal $\mathfrak b$ such that $(\gamma)=\mathfrak a'\mathfrak b$ (that is $\mathfrak a\cdot\mathfrak b\sim 1)$ and

$$\mathcal{N}(\mathfrak{b}) = ax^2 + bxy + cy^2.$$

• Start with $\mathfrak{a} := \prod_i \mathfrak{p}_i^{e_i}$ which is \mathcal{B} -smooth.

Let \mathfrak{a} be an ideal. There is $\mathfrak{a}' \sim \mathfrak{a}$ of the form $\mathfrak{a}' = a\mathbb{Z} + \frac{(b+\sqrt{\Delta})}{2}\mathbb{Z}$. Then for each x, y we have

$$\gamma := ax + y\left(rac{b + \sqrt{\Delta}}{2}
ight) \in \mathfrak{a}'.$$

(JacWil09) There is an ideal $\mathfrak b$ such that $(\gamma)=\mathfrak a'\mathfrak b$ (that is $\mathfrak a\cdot\mathfrak b\sim 1)$ and

$$\mathcal{N}(\mathfrak{b}) = ax^2 + bxy + cy^2.$$

- **1** Start with $\mathfrak{a} := \prod_i \mathfrak{p}_i^{e_i}$ which is \mathcal{B} -smooth.
- **2** Find x, y such that $\phi_{\mathfrak{a}}(x, y) := ax^2 + bxy + cy^2$ is B-smooth

Let \mathfrak{a} be an ideal. There is $\mathfrak{a}' \sim \mathfrak{a}$ of the form $\mathfrak{a}' = a\mathbb{Z} + \frac{(b+\sqrt{\Delta})}{2}\mathbb{Z}$. Then for each x, y we have

$$\gamma := ax + y\left(rac{b + \sqrt{\Delta}}{2}
ight) \in \mathfrak{a}'.$$

(JacWil09) There is an ideal $\mathfrak b$ such that $(\gamma)=\mathfrak a'\mathfrak b$ (that is $\mathfrak a\cdot\mathfrak b\sim 1)$ and

$$\mathcal{N}(\mathfrak{b}) = ax^2 + bxy + cy^2.$$

- **1** Start with $\mathfrak{a} := \prod_i \mathfrak{p}_i^{\mathfrak{e}_i}$ which is \mathcal{B} -smooth.
- **2** Find x, y such that $\phi_{\mathfrak{a}}(x, y) := ax^2 + bxy + cy^2$ is *B*-smooth
- **③** Deduce \mathcal{B} -smooth ideal \mathfrak{b} such that $\mathfrak{a} \cdot \mathfrak{b} \sim 1$

Let $\phi_{\mathfrak{a}}(X, Y) = aX^2 + bXY + cY^2$ and *B* defining *B*. We look for *B*-smooth values of $\phi_{\mathfrak{a}}(X, Y)$. (Jac99) : use the **quadratic sieve**

Let $\phi_{\mathfrak{a}}(X, Y) = aX^2 + bXY + cY^2$ and *B* defining *B*. We look for *B*-smooth values of $\phi_{\mathfrak{a}}(X, Y)$. (Jac99) : use the **quadratic sieve**

We look for $x \in [-M, M]$ such that $\phi_{\mathfrak{a}}(x, 1)$ is *B*-smooth. We do not want to test them all.

Let $\phi_{\mathfrak{a}}(X, Y) = aX^2 + bXY + cY^2$ and *B* defining *B*. We look for *B*-smooth values of $\phi_{\mathfrak{a}}(X, Y)$. (Jac99) : use the **quadratic sieve**

We look for $x \in [-M, M]$ such that $\phi_{\mathfrak{a}}(x, 1)$ is *B*-smooth. We do not want to test them all.

• We compute the roots r_p of $\phi_{\mathfrak{a}}(X,1) \mod p$ for $p \leq B$.

Let $\phi_{\mathfrak{a}}(X, Y) = aX^2 + bXY + cY^2$ and *B* defining *B*. We look for *B*-smooth values of $\phi_{\mathfrak{a}}(X, Y)$. (Jac99) : use the **quadratic sieve**

We look for $x \in [-M, M]$ such that $\phi_{\mathfrak{a}}(x, 1)$ is *B*-smooth. We do not want to test them all.

- **(**) We compute the roots r_p of $\phi_a(X, 1) \mod p$ for $p \leq B$.
- **2** We initialize S of length 2M + 1 to 0.

Let $\phi_{\mathfrak{a}}(X, Y) = aX^2 + bXY + cY^2$ and *B* defining *B*. We look for *B*-smooth values of $\phi_{\mathfrak{a}}(X, Y)$. (Jac99) : use the **quadratic sieve**

We look for $x \in [-M, M]$ such that $\phi_{\mathfrak{a}}(x, 1)$ is *B*-smooth. We do not want to test them all.

- **(**) We compute the roots r_p of $\phi_a(X, 1) \mod p$ for $p \leq B$.
- **2** We initialize S of length 2M + 1 to 0.
- For $x = r_p + kp \in [-M, M]$ do $S[x] \leftarrow S[x] + \log p$ because

$$\phi_{\mathfrak{a}}(x,1) = \phi_{\mathfrak{a}}(r_{\rho} + kp, 1) \equiv \phi_{\mathfrak{a}}(r_{\rho}, 1) \equiv 0 \mod p.$$

Let $\phi_{\mathfrak{a}}(X, Y) = aX^2 + bXY + cY^2$ and *B* defining *B*. We look for *B*-smooth values of $\phi_{\mathfrak{a}}(X, Y)$. (Jac99) : use the **quadratic sieve**

We look for $x \in [-M, M]$ such that $\phi_{\mathfrak{a}}(x, 1)$ is *B*-smooth. We do not want to test them all.

- We compute the roots r_p of $\phi_{\mathfrak{a}}(X,1) \mod p$ for $p \leq B$.
- **2** We initialize S of length 2M + 1 to 0.

• For $x = r_p + kp \in [-M, M]$ do $S[x] \leftarrow S[x] + \log p$ because

$$\phi_{\mathfrak{a}}(x,1) = \phi_{\mathfrak{a}}(r_{\rho} + kp, 1) \equiv \phi_{\mathfrak{a}}(r_{\rho}, 1) \equiv 0 \mod p.$$

• For "large" S[x], test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$.

Large prime variants

We speed-up the relation collection phase by considering \mathfrak{p} such that $B \leq \mathcal{N}(\mathfrak{p}) \leq B_2$.

Large prime variants

We speed-up the relation collection phase by considering \mathfrak{p} such that $B \leq \mathcal{N}(\mathfrak{p}) \leq B_2$.

• **Single large prime variant**. We authorize relations of the form

$$\mathfrak{a}=\underbrace{\mathfrak{p}_{1}\ldots\mathfrak{p}_{n}}_{\in\mathcal{B}}\mathfrak{p},$$

where $B \leq \mathcal{N}(\mathfrak{p}) \leq B_2$.

Large prime variants

We speed-up the relation collection phase by considering \mathfrak{p} such that $B \leq \mathcal{N}(\mathfrak{p}) \leq B_2$.

• **Single large prime variant**. We authorize relations of the form

$$\mathfrak{a}=\underbrace{\mathfrak{p}_1\ldots\mathfrak{p}_n}_{\in\mathcal{B}}\mathfrak{p},$$

where $B \leq \mathcal{N}(\mathfrak{p}) \leq B_2$.

• **Double large prime variant** . We authorise relations of the form

$$\mathfrak{a} = \underbrace{\mathfrak{p}_1 \dots \mathfrak{p}_n}_{\in \mathcal{B}} \mathfrak{p} \mathfrak{p}',$$

where $B \leq \mathcal{N}(\mathfrak{p}), \mathcal{N}(\mathfrak{p}') \leq B_2$.

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$.

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$. This can be done by trial division.

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$. This can be done by trial division.

We used an algorithm due to Berstein.

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$. This can be done by trial division.

We used an algorithm due to Berstein.

• Takes non negative x_1, \ldots, x_K and primes p_1, \ldots, p_N .

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$. This can be done by trial division.

We used an algorithm due to Berstein.

- Takes non negative x_1, \ldots, x_K and primes p_1, \ldots, p_N .
- returns the $\{p_1, \ldots, p_N\}$ -smooth part of each x_i

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$. This can be done by trial division.

We used an algorithm due to Berstein.

- Takes non negative x_1, \ldots, x_K and primes p_1, \ldots, p_N .
- returns the $\{p_1, \ldots, p_N\}$ -smooth part of each x_i
- Test is simultanous

Quadratic sieve : for large S[x], we test the smoothness of $\phi_{\mathfrak{a}}(x, 1)$. This can be done by trial division.

We used an algorithm due to Berstein.

- Takes non negative x_1, \ldots, x_K and primes p_1, \ldots, p_N .
- returns the $\{p_1, \ldots, p_N\}$ -smooth part of each x_i
- Test is simultanous
- uses a tree structure.

Relation collection timings

TAB.: Comparison of the relation collection time for $\Delta = -4(10^n+1)$

п	0LP	1LP	2LP	2LP Batch
40	0.69	0.56	0.59	0.66
45	7.25	3.77	3.83	4.41
50	18.82	9.30	9.84	6.82
55	152.28	74.78	55.99	36.49
60	333.26	166.88	140.79	83.06
65	2033.97	853.27	478.57	368.31
70	2828.92	1277.94	822.39	670.63
75	14811.70	6033.89	3324.61	2732.68

Eliminating columns

Sparse large matrix. Especially with the large primes.
Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply algorithms for dense matrices.

Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply algorithms for dense matrices.

We can use the standard Gaussian elimination. It consists of pivoting with an arbitrary row.

Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply algorithms for dense matrices.

We can use the standard Gaussian elimination. It consists of pivoting with an arbitrary row.

Two problems encontered :

Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply algorithms for dense matrices.

We can use the standard Gaussian elimination. It consists of pivoting with an arbitrary row.

Two problems encontered :

• R_3 can have Hamming weight $w(R_3) = w(R_1) + w(R_2)$.

Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply algorithms for dense matrices.

We can use the standard Gaussian elimination. It consists of pivoting with an arbitrary row.

Two problems encontered :

- R_3 can have Hamming weight $w(R_3) = w(R_1) + w(R_2)$.
- Intersection of the section of th

Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply algorithms for dense matrices.

We can use the standard Gaussian elimination. It consists of pivoting with an arbitrary row.

Two problems encontered :

- R_3 can have Hamming weight $w(R_3) = w(R_1) + w(R_2)$.
- 2 The coefficients might grow dramatically.

We describe a method for managing the growth of the density and the size of the coefficients during the elimination.

Row $R \rightarrow \text{cost}$ function COST(R) taking into account :

Row $R \rightarrow \text{cost}$ function COST(R) taking into account :

1 Hamming weight of R

Row $R \rightarrow \text{cost}$ function COST(R) taking into account :

- **1** Hamming weight of R
- ② Size of its coefficients

Row $R \rightarrow \text{cost function } COST(R)$ taking into account :

- **1** Hamming weight of R
- O Size of its coefficients

For a given column involving rows $R_1,...,R_k$ we construct the complete graph ${\mathcal G}$:

Row $R \rightarrow \text{cost}$ function COST(R) taking into account :

- Hamming weight of R
- O Size of its coefficients

For a given column involving rows $R_1, ..., R_k$ we construct the complete graph \mathcal{G} :

• vertices R_i

Row $R \rightarrow \text{cost}$ function COST(R) taking into account :

- Hamming weight of R
- O Size of its coefficients

For a given column involving rows $R_1, ..., R_k$ we construct the complete graph \mathcal{G} :

- vertices R_i
- edges labeled with the cost of the recombination $C_{ij} = COST(RECOMB(R_i, R_j))$

Row $R \rightarrow \text{cost}$ function COST(R) taking into account :

- Hamming weight of R
- O Size of its coefficients

For a given column involving rows $R_1, ..., R_k$ we construct the complete graph \mathcal{G} :

- vertices R_i
- edges labeled with the cost of the recombination $C_{ij} = COST(RECOMB(R_i, R_j))$

We then construct the minimum spanning tree of ${\cal G}$ and eliminate rows from the leaves to the root.

Timings Gaussian elimination for $\Delta = 4(10^{60} + 3)$

Naive Gauss			Dedicated strategy		
i	Col Nb	HNF time	i	Col Nb	HNF time
5	1067	357.9	5	1078	368.0
10	799	184.8	10	806	187.2
50	596	93.7	50	580	84.3
125	542	73.8	125	515	63.4
160	533	72.0	160	497	56.9
170	532	222.4	170	493	192.6

We want to avoid kernel computation and use fewer vectors. Idea due to $\ensuremath{\mathsf{Vollmer}}$

We want to avoid kernel computation and use fewer vectors. Idea due to Vollmer

• We find k extra relations $\vec{r_i}$.

We want to avoid kernel computation and use fewer vectors. Idea due to $\ensuremath{\mathsf{Vollmer}}$

- We find k extra relations $\vec{r_i}$.
- 2 We solve the k linear systems $\vec{x_i}M = \vec{r_i}$

We want to avoid kernel computation and use fewer vectors. Idea due to $\ensuremath{\mathsf{Vollmer}}$

- We find k extra relations $\vec{r_i}$.
- **2** We solve the *k* linear systems $\vec{x_i}M = \vec{r_i}$
- **③** We augment the matrix M with the k extra rows

$$M':=\left(\begin{matrix} M\\ \cdots\\ \vec{r_i} \end{matrix}\right) \quad \vec{x_i'}:=\left(\begin{array}{c} \vec{x_i} \\ 0 \\ \cdots \\ 0 \\ -1 \\ 0 \\ \cdots \\ 0 \end{array} \right).$$

We want to avoid kernel computation and use fewer vectors. Idea due to $\ensuremath{\mathsf{Vollmer}}$

- We find k extra relations $\vec{r_i}$.
- **2** We solve the *k* linear systems $\vec{x_i}M = \vec{r_i}$
- **③** We augment the matrix M with the k extra rows

$$M':=\left(\begin{matrix} M\\ \cdots\\ \vec{r_i} \end{matrix}\right) \quad \vec{x_i'}:=\left(\begin{array}{c} \vec{x_i} & 0 \ldots & 0 \\ \end{array}\right).$$

The $\vec{x_i}'$ are kernel vectors of the new relation matrix M'.

Timings regulator computation

Kernel computation in $O(L_{\Delta}(1/2,\sqrt{2}))$.

Timings regulator computation

Kernel computation in $O(L_{\Delta}(1/2, \sqrt{2}))$. System solving in $O(L_{\Delta}(1/2, 3/\sqrt{8}))$.

Practical improvements

Timings regulator computation

Kernel computation in $O(L_{\Delta}(1/2, \sqrt{2}))$. System solving in $O(L_{\Delta}(1/2, 3/\sqrt{8}))$.

n	kernel computation	system solving
40	9.7	3.4
45	17.6	6.1
50	39.9	18.2
55	126.7	53.0
60	424.1	140.0
65	514.8	320.2
70	2728.5	791.1
75	8587.8	1775 8

TAB.: Regulator computation time for $\Delta = 4(10^n + 3)$

Overall time comparison

Discriminants of the form $\Delta = 4(10^n + 3)$

TAB.: Overall time in seconds

n	Old	New
40	35.6	15.5
45	107.0	57.0
50	224.0	119.0
55	756.0	271.0
60	1535.0	655.0
65	24607.0	3125.0
70	38818.0	9991.0

Heroic computations

In the imaginary case, let $\Delta_n = -4(10^n+1)$

Heroic computations

In the imaginary case, let $\Delta_n = -4(10^n+1)$

$$\begin{split} \mathrm{Cl}_{\Delta_{100}} &\cong C(2)^7 \times C(146249177947219527457169431585749\\ &5335176880879072) \\ \mathrm{Cl}_{\Delta_{110}} &\cong C(2)^{11} \times C(857640364195029289112195513145214) \end{split}$$

8838284294200071440)
Heroic computations

In the imaginary case, let $\Delta_n = -4(10^n+1)$

$$\begin{split} \mathrm{Cl}_{\Delta_{100}} &\cong C(2)^7 \times C(146249177947219527457169431585749\\ &5335176880879072) \\ \mathrm{Cl}_{\Delta_{110}} &\cong C(2)^{11} \times C(857640364195029289112195513145214\\ &8838284294200071440) \end{split}$$

In the real case, let $\Delta_{110} = 4(10^{110} + 3)$

Heroic computations

In the imaginary case, let $\Delta_n = -4(10^n+1)$

$$\begin{split} \mathrm{Cl}_{\Delta_{100}} &\cong C(2)^7 \times C(146249177947219527457169431585749\\ &5335176880879072) \\ \mathrm{Cl}_{\Delta_{110}} &\cong C(2)^{11} \times C(857640364195029289112195513145214\\ &8838284294200071440) \end{split}$$

In the real case, let $\Delta_{110}=4(10^{110}+3)$

$$\mathrm{Cl}_{\Delta_{110}}\cong \mathbb{Z}/12\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\ ,$$

29/30

Heroic computations

In the imaginary case, let $\Delta_n = -4(10^n + 1)$

$$\begin{split} \mathrm{Cl}_{\Delta_{100}} &\cong C(2)^7 \times C(146249177947219527457169431585749\\ &5335176880879072) \\ \mathrm{Cl}_{\Delta_{110}} &\cong C(2)^{11} \times C(857640364195029289112195513145214\\ &8838284294200071440) \end{split}$$

In the real case, let $\Delta_{110}=4(10^{110}+3)$

$$\mathrm{Cl}_{\Delta_{110}}\cong \mathbb{Z}/12\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\ ,$$

 $R_{\Delta_{110}}\approx 70795074091059722608293227655184666748799878533480399.67302$

Thank you for your attention

30/30