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Motivations

Let K be a quadratic number field of discrimiant ∆ and maximal
order O∆. We are interested in

Computing the group structure of Cl(∆) := Cl(O∆).

Computing the regulator R∆ of K.

Computing a compact representation of the fundamental unit
ε∆.

We provide practical improvements to the classical subexponential
algorithms.

We achieve the computation of Cl(∆) and R∆ for a 110-digit
discriminant.
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Ideals

We work in K that satisfies [K : Q] = 2.

Let O∆ be the ring of integers of K and ∆ its discriminant.

If ∆ < 0 : imaginary case. If ∆ > 0 : real case.

The fractional ideals a are the sets of the form

1

d
a′, | d ∈ K, a′ is an ideal of O∆.
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Ideal class group

Let I(∆) be the invertible fractional ideals and P the
principal ideals, then

Cl(∆) := I(∆)/P.

Cl(∆) is finite of cardinality h(∆).

h(∆) is essentially as “hard” to compute as Cl(∆).

Let a, b ∈ I(∆), then we denote by a ∼ b :

[a] = [b] ∈ Cl(∆)⇔ ∃α ∈ K, a = (α)b.
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Regulator

We assume that ∆ > 0.

Elements of K such that N (x) = ±1 are units.

Every unit ε can be written as ε = ±εn∆, where ε∆ is the
fundamental unit of K.

The regulator of K is
R∆ = log ε∆.

Every unit ε satisfies ∃n, log |ε| = nR∆.
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General strategy

The algorithms for solving our problems follow the same pattern.
Let B = {p1, . . . , pN} be a generating set of Cl(∆).

1 Find relations of the form

(α) = pe1
1 · · · p

eN
N ,

that is
∏

i [pi ]
ei = [1]

2 Every time a relation is found, [e1, . . . , eN ] is added as a row
of the relation matrix M

3 Perform a linear algebra phase on M.
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Complexity

We define the subexponential function by

L∆(α, β) = eβ log |∆|α log log |∆|1−α
.

For α ∈ [0, 1], L∆(α, β) is between exponential and polynomial in
log |∆| since

L∆(0, β) = log |∆|β,
L∆(1, β) = |∆|β.

Our problems for qudratic number fields have complexity

L∆(1/2, c),

where c depends on the linear algebra phase.

10/30

J-F. Biasse, M. J. Jacobson Jr Improvements in class group and regulator computation



Outline Introduction Classical Algorithms Practical improvements

Complexity

We define the subexponential function by

L∆(α, β) = eβ log |∆|α log log |∆|1−α
.

For α ∈ [0, 1], L∆(α, β) is between exponential and polynomial in
log |∆| since

L∆(0, β) = log |∆|β,
L∆(1, β) = |∆|β.

Our problems for qudratic number fields have complexity

L∆(1/2, c),

where c depends on the linear algebra phase.

10/30

J-F. Biasse, M. J. Jacobson Jr Improvements in class group and regulator computation



Outline Introduction Classical Algorithms Practical improvements

Complexity

We define the subexponential function by

L∆(α, β) = eβ log |∆|α log log |∆|1−α
.

For α ∈ [0, 1], L∆(α, β) is between exponential and polynomial in
log |∆| since

L∆(0, β) = log |∆|β,
L∆(1, β) = |∆|β.

Our problems for qudratic number fields have complexity

L∆(1/2, c),

where c depends on the linear algebra phase.

10/30

J-F. Biasse, M. J. Jacobson Jr Improvements in class group and regulator computation



Outline Introduction Classical Algorithms Practical improvements

The factor base

We fill the factor base with invertible prime ideals p. There is p
prime such that

p ∩ Z = (p) and N (p) = p.

Let B a bound, we define

B := {p invertible prime | N (p) ≤ B} = {p1, . . . , pN} .

Under ERH, if B > 6 log2 |∆|, then B generates Cl(∆), and the
lattice L of the relations satisfies

Cl(∆) ' ZN/L.

We have (a is B-smooth)⇔(N (a) is B-smooth).
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Hermite Normal Form

Invertible operations on rows lead to the Hermite Normal Form
H of M :

H =



h1,1 . . . 0

...
. . .

...
∗ . . . hl ,l

(0)

(∗)
1 (0)

. . .
(0) 1

(0)


,

where ∀i > j : 0 ≤ hij < hjj .

Upper left : Essential part
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Smith Normal Form (SNF) and class group structure

Any matrix A ∈ Zn×n with non zero determinant can be written
as :

A = V−1


d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dn

U−1

where ∀i such that 1 ≤ i < n : di+1|di .

If (di ) are the diagonal coefficients of the SNF of the essential part
of H then

Cl(∆) =
⊕

1≤i≤n

(Z/diZ)
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Computing the HNF in practice

Several implementation of HNF algorithm exist : Pari, Kash, Sage,
Magma, NTL ... We used an NTL/Linbox-based strategy.

Let M ∈ ZN′×N be the relation matrix.

1 Extract two random N × N full-rank submatrices M1 and M2

of M.

2 Compute h1 ← det(M1) and h2 ← det(M2) with function det
of linbox.

3 Let h := gcd(h1, h2). It is a multiple of h∆.

4 Call the implementation of DomKanTro87 modular HNF
algorithm with (M, h).

In fact MAGMA is much faster :( ⇒ room for improvement.
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Regulator computation

Let M = (mij) ∈ ZN′×N , be the relation matrix, B = {p1, . . . , pN},
and

(αi ) = pmi1
1 · · · pmN1

N .

Let X = (xi ), i ≤ N ′ be a kernel vector of M. Then

γ := αx1
1 · · ·α

xN′
N′

is a unit since (γ) =
∏

i α
xi
i = (1).

There is n such that
log |γ| = nR∆

Each kernel vector of M yields a multiple of R∆. We recover R∆ by
successive real-GCD computation.
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N .
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Relation collection via sieving

Let a be an ideal. There is a′ ∼ a of the form a′ = aZ + (b+
√

∆)
2 Z.

Then for each x , y we have

γ := ax + y

(
b +
√

∆

2

)
∈ a′.

(JacWil09) There is an ideal b such that (γ) = a′b (that is
a · b ∼ 1) and

N (b) = ax2 + bxy + cy2.

1 Start with a :=
∏

i p
ei
i which is B-smooth.

2 Find x , y such that φa(x , y) := ax2 + bxy + cy2 is B-smooth

3 Deduce B-smooth ideal b such that a · b ∼ 1
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The quadratic sieve

Let φa(X ,Y ) = aX 2 + bXY + cY 2 and B defining B. We look for
B-smooth values of φa(X ,Y ). (Jac99) : use the quadratic sieve

We look for x ∈ [−M,M] such that φa(x , 1) is B-smooth. We do
not want to test them all.

1 We compute the roots rp of φa(X , 1) mod p for p ≤ B.

2 We initialize S of length 2M + 1 to 0.

3 For x = rp + kp ∈ [−M,M] do S [x ]← S [x ] + log p because

φa(x , 1) = φa(rp + kp, 1) ≡ φa(rp, 1) ≡ 0 mod p.

4 For “large” S [x ], test the smoothness of φa(x , 1).
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Large prime variants

We speed-up the relation collection phase by considering p such that
B ≤ N (p) ≤ B2.

Single large prime variant. We authorize relations of the
form

a = p1 . . . pn︸ ︷︷ ︸
∈B

p,

where B ≤ N (p) ≤ B2.

Double large prime variant . We authorise relations of the
form

a = p1 . . . pn︸ ︷︷ ︸
∈B

pp′,

where B ≤ N (p),N (p′) ≤ B2.
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Batch smoothness test

Quadratic sieve : for large S [x ], we test the smoothness of φa(x , 1).

This can be done by trial division.

We used an algorithm due to Berstein.

Takes non negative x1, . . . , xK and primes p1, . . . , pN .

returns the {p1, . . . , pN}-smooth part of each xi

Test is simultanous

uses a tree structure.
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Relation collection timings

Tab.: Comparison of the relation collection time for ∆ = −4(10n + 1)

n 0LP 1LP 2LP 2LP Batch

40 0.69 0.56 0.59 0.66
45 7.25 3.77 3.83 4.41
50 18.82 9.30 9.84 6.82
55 152.28 74.78 55.99 36.49
60 333.26 166.88 140.79 83.06
65 2033.97 853.27 478.57 368.31
70 2828.92 1277.94 822.39 670.63
75 14811.70 6033.89 3324.61 2732.68
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Eliminating columns

Sparse large matrix. Especially with the large primes.

We want to eliminate columns to reduce its dimension and apply
algorithms for dense matrices.

We can use the standard Gaussian elimination. It consists of pivoting
with an arbitrary row.

Two problems encontered :

1 R3 can have Hamming weight w(R3) = w(R1) + w(R2).

2 The coefficients might grow dramatically.

We describe a method for managing the growth of the density and
the size of the coefficients during the elimination.
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Structured Elimination

Row R → cost function COST (R) taking into account :

1 Hamming weight of R

2 Size of its coefficients

For a given column involving rows R1, ...,Rk we construct the com-
plete graph G :

1 vertices Ri

2 edges labeled with the cost of the recombination
Cij = COST (RECOMB(Ri ,Rj))

We then construct the minimum spanning tree of G and eliminate
rows from the leaves to the root.
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Minimum spanning tree on Alberta’s map

Jasper Edmonton

Red Deer

Calgary
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Timings Gaussian elimination for ∆ = 4(1060 + 3)

Naive Gauss Dedicated strategy
i Col Nb HNF time i Col Nb HNF time
5 1067 357.9 5 1078 368.0

10 799 184.8 10 806 187.2
50 596 93.7 50 580 84.3

125 542 73.8 125 515 63.4
160 533 72.0 160 497 56.9
170 532 222.4 170 493 192.6
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Regulator computation

We want to avoid kernel computation and use fewer vectors. Idea
due to Vollmer

1 We find k extra relations ~ri .

2 We solve the k linear systems ~xiM = ~ri
3 We augment the matrix M with the k extra rows

M ′ :=

 M

~ri

 ~xi
′ :=

(
~xi 0 . . . 0 −1 0 . . . 0

)
.

The ~xi
′ are kernel vectors of the new relation matrix M ′.
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Timings regulator computation

Kernel computation in O(L∆(1/2,
√

2)).

System solving in O(L∆(1/2, 3/
√

8)).

Tab.: Regulator computation time for ∆ = 4(10n + 3)

n kernel computation system solving

40 9.7 3.4
45 17.6 6.1
50 39.9 18.2
55 126.7 53.0
60 424.1 140.0
65 514.8 320.2
70 2728.5 791.1
75 8587.8 1775.8
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Overall time comparison

Discriminants of the form ∆ = 4(10n + 3)

Tab.: Overall time in seconds

n Old New

40 35.6 15.5
45 107.0 57.0
50 224.0 119.0
55 756.0 271.0
60 1535.0 655.0
65 24607.0 3125.0
70 38818.0 9991.0
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Heroic computations

In the imaginary case, let ∆n = −4(10n + 1)

Cl∆100
∼= C (2)7 × C (146249177947219527457169431585749

5335176880879072)

Cl∆110
∼= C (2)11 × C (857640364195029289112195513145214

8838284294200071440)

In the real case, let ∆110 = 4(10110 + 3)

Cl∆110
∼= Z/12Z× Z/2Z ,

R∆110 ≈ 70795074091059722608293227655184666748799878533480399.67302
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Conclusion

Thank you for your attention
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