Explicit Coleman integration for hyperelliptic curves

Jennifer Balakrishnan¹ Robert Bradshaw² Kiran Kedlaya¹

 1 Massachusetts Institute of Technology

² University of Washington

ANTS-IX INRIA Nancy, France Thursday, July 22, 2010

Balakrishnan, Bradshaw, Kedlaya (MIT) [Coleman integration for hyperelliptic curves](#page-40-0) ANTS-IX 1 / 21

つひい

Introduction: making sense of *p*-adic integrals

Let *C* be the hyperelliptic curve

$$
y^2 = x^5 - x^4 + x^3 + x^2 - 2x + 1
$$

over \mathbf{Q}_7 and let $P_1 = (0, 1)$, $P_2 = (1, -1)$.

Two questions:

1 How do we compute things like

$$
\int_{P_1}^{P_2} \frac{dx}{2y}
$$
?

2 What do these (Coleman) integrals tell us?

 Ω

Introduction: making sense of *p*-adic integrals

Let *C* be the hyperelliptic curve

$$
y^2 = x^5 - x^4 + x^3 + x^2 - 2x + 1
$$

over \mathbf{Q}_7 and let $P_1 = (0, 1)$, $P_2 = (1, -1)$.

Two questions:

1 How do we compute things like

$$
\int_{P_1}^{P_2} \frac{dx}{2y}
$$
?

2 What do these (Coleman) integrals tell us?

 290

イロト (個) イヨト (ヨ)

Notation and setup

- *X*: genus *g* hyperelliptic curve (of the form $y^2 = f(x)$ with $\deg f(x) = 2g + 1$) over $K = \mathbf{Q}_p$
- *p*: prime of good reduction
- *X*: special fibre of *X*
- *X***Q**: generic fibre of *X* (as a rigid analytic space)

 QQ

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Notation and setup, in pictures

- There is a natural reduction map from X_{Ω} to \overline{X} ; the inverse image of any point of \overline{X} is a subspace of X_{Ω} isomorphic to an open unit disc. We call such a disc a *residue disc* of *X*.
- A *wide open subspace* of X_{Ω} is the complement in X_{Ω} of the union of a finite collection of disjoint closed discs of radius λ_i < 1:

 Ω

Computing tiny integrals

We refer to any Coleman integral of the form $\int_P^Q \omega$ in which *P*, *Q* lie in the same residue disc as a *tiny integral*. To compute such an integral:

Construct a linear interpolation from *P* to *Q*. For instance, in a non-Weierstrass residue disc, we may take

$$
x(t) = (1 - t)x(P) + tx(Q)
$$

$$
y(t) = \sqrt{f(x(t))},
$$

where $y(t)$ is expanded as a formal power series in t .

Formally integrate the power series in *t*:

$$
\int_P^Q \omega = \int_0^1 \omega(x(t), y(t)).
$$

Tiny integral: example

Let *X* be the hyperelliptic curve $y^2 = f(x) = x^5 - x^4 + x^3 + x^2 - 2x + 1$ over \mathbf{Q}_7 , $\omega = \frac{dx}{2y}$ $\frac{ux}{2y}$, and

$$
P = (1, -1)
$$

= (1 + O(7⁵), 6 + 6 \cdot 7 + 6 \cdot 7² + 6 \cdot 7³ + 6 \cdot 7⁴ + O(7⁵)),

$$
Q = (1 + 7 + O(75), 6 + 4 \cdot 7 + 4 \cdot 72 + 3 \cdot 73 + 2 \cdot 74 + O(75)).
$$

We compute $\int_P^Q \omega$.

 $2Q$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Tiny integral: example, continued

Computing $\int_P^Q \omega$:

1 Interpolate: we have

$$
x(t) = (1-t)x(P) + tx(Q) = 1 + O(7^5) + (7 + O(7^5)) t
$$

\n
$$
y(t) = \sqrt{f(x(t))} = 6 + 6 \cdot 7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + O(7^5) +
$$

\n
$$
(5 \cdot 7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + O(7^5)) t + \cdots
$$

Integrate:

$$
\int_{P}^{Q} \frac{dx}{2y} = \int_{0}^{1} \frac{7 + O(7^{5})}{(5 + 6 \cdot 7 + \dots) + (3 \cdot 7 + 6 \cdot 7^{2} + \dots) t + \dots} dt
$$

= 3 \cdot 7 + 2 \cdot 7^{3} + 5 \cdot 7^{4} + O(7^{5}).

 $2Q$

ミメス ヨメ

K ロ ト K 伊 ト K

Tiny integral: example, continued

Computing $\int_P^Q \omega$:

1 Interpolate: we have

$$
x(t) = (1-t)x(P) + tx(Q) = 1 + O(7^5) + (7 + O(7^5)) t
$$

\n
$$
y(t) = \sqrt{f(x(t))} = 6 + 6 \cdot 7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + O(7^5) +
$$

\n
$$
(5 \cdot 7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + O(7^5)) t + \cdots
$$

² Integrate:

$$
\int_{P}^{Q} \frac{dx}{2y} = \int_{0}^{1} \frac{7 + O(7^{5})}{(5 + 6 \cdot 7 + \dots) + (3 \cdot 7 + 6 \cdot 7^{2} + \dots) t + \dots} dt
$$

= 3 \cdot 7 + 2 \cdot 7^{3} + 5 \cdot 7^{4} + O(7^{5}).

 $2Q$

ミメス ヨメ

Coleman formulated an integration theory on wide open subspaces of curves over O, exhibiting no phenomena of path dependence. This allows us to define $\int_P^Q \omega$ whenever ω is a meromorphic 1-form on *X*, and P , $Q \in X(\mathbf{Q}_p)$ are points where ω is holomorphic. Properties of the Coleman integral include:

Theorem (Coleman)

- *Linearity:* $\int_P^Q (\alpha \omega_1 + \beta \omega_2) = \alpha \int_P^Q \omega_1 + \beta \int_P^Q \omega_2$ *.*
- *Additivity:* $\int_{P}^{R} \omega = \int_{P}^{Q} \omega + \int_{Q}^{R} \omega$.
- *Change of variables: if* X' *is another such curve, and f* : $U \rightarrow U'$ *is a* r *igid analytic map between wide opens, then* $\int_P^\mathcal{Q} f^*\omega = \int_{f(P)}^{f(Q)} \omega.$
- *Fundamental theorem of calculus:* $\int_{P}^{Q} df = f(Q) f(P)$ *.*

 Ω

イロト イ押ト イヨト イヨト

Coleman formulated an integration theory on wide open subspaces of curves over O, exhibiting no phenomena of path dependence. This allows us to define $\int_P^Q \omega$ whenever ω is a meromorphic 1-form on *X*, and P , $Q \in X(\mathbf{Q}_p)$ are points where ω is holomorphic. Properties of the Coleman integral include:

Theorem (Coleman)

- *Linearity:* $\int_P^Q (\alpha \omega_1 + \beta \omega_2) = \alpha \int_P^Q \omega_1 + \beta \int_P^Q \omega_2$ *.*
- *Additivity:* $\int_{P}^{R} \omega = \int_{P}^{Q} \omega + \int_{Q}^{R} \omega$.
- *Change of variables: if* X' *is another such curve, and f* : $U \rightarrow U'$ *is a* r *igid analytic map between wide opens, then* $\int_P^\mathcal{Q} f^*\omega = \int_{f(P)}^{f(Q)} \omega.$
- *Fundamental theorem of calculus:* $\int_{P}^{Q} df = f(Q) f(P)$ *.*

 Ω

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Coleman formulated an integration theory on wide open subspaces of curves over O, exhibiting no phenomena of path dependence. This allows us to define $\int_P^Q \omega$ whenever ω is a meromorphic 1-form on *X*, and P , $Q \in X(\mathbf{Q}_p)$ are points where ω is holomorphic. Properties of the Coleman integral include:

Theorem (Coleman)

- *Linearity:* $\int_P^Q (\alpha \omega_1 + \beta \omega_2) = \alpha \int_P^Q \omega_1 + \beta \int_P^Q \omega_2$ *.*
- *Additivity:* $\int_{P}^{R} \omega = \int_{P}^{Q} \omega + \int_{Q}^{R} \omega$.
- *Change of variables: if X' is another such curve, and* $f : U \to U'$ *is a* r *igid analytic map between wide opens, then* $\int_P^Q\!\! f^*\omega = \int_{f(P)}^{f(Q)} \omega.$

Fundamental theorem of calculus: $\int_{P}^{Q} df = f(Q) - f(P)$ *.*

 Ω

イロト (個) イヨト (ヨ)

Coleman formulated an integration theory on wide open subspaces of curves over O, exhibiting no phenomena of path dependence. This allows us to define $\int_P^Q \omega$ whenever ω is a meromorphic 1-form on *X*, and P , $Q \in X(\mathbf{Q}_p)$ are points where ω is holomorphic. Properties of the Coleman integral include:

Theorem (Coleman)

- *Linearity:* $\int_P^Q (\alpha \omega_1 + \beta \omega_2) = \alpha \int_P^Q \omega_1 + \beta \int_P^Q \omega_2$ *.*
- *Additivity:* $\int_{P}^{R} \omega = \int_{P}^{Q} \omega + \int_{Q}^{R} \omega$.
- *Change of variables: if X' is another such curve, and* $f : U \to U'$ *is a* r *igid analytic map between wide opens, then* $\int_P^Q\!\! f^*\omega = \int_{f(P)}^{f(Q)} \omega.$
- *Fundamental theorem of calculus:* $\int_P^Q df = f(Q) f(P)$ *.*

 $2Q$

イロト イ押ト イヨト イヨト

Coleman's construction

How do we integrate if *P*, *Q* aren't in the same residue disc? Coleman's key idea: use Frobenius to move between different residue discs (Dwork's "analytic continuation along Frobenius")

So we need to calculate the action of Frobenius on differentials.

つひひ

Frobenius, MW-cohomology

- *X*^{\prime}: affine curve (*X* − {Weierstrass points of *X* })
- A: coordinate ring of X'

To discuss the differentials we will be integrating, we recall: The *Monsky-Washnitzer (MW) weak completion of A* is the ring *A* † consisting of infinite sums of the form

$$
\left\{\sum_{i=-\infty}^{\infty}\frac{B_i(x)}{y^i},\ B_i(x)\in K[x],\deg B_i\leq 2g\right\},\
$$

further subject to the condition that $v_p(B_i(x))$ grows faster than a linear function of *i* as $i \rightarrow \pm \infty$. We make a ring out of these using the relation $y^2 = f(x)$.

These functions are holomorphic on wide opens, so we will integrate 1-forms

$$
\omega = g(x, y) \frac{dx}{2y}, \quad g(x, y) \in A^{\dagger}.
$$

 QQQ

Frobenius and a basis for de Rham cohomology

Any odd differential $\omega = g(x, y) \frac{dx}{2\nu}$ $\frac{dx}{2y}$, $g(x,y)\in A^{\dagger}$ can be written as

$$
\omega = df + c_0 \omega_0 + \dots + c_{2g-1} \omega_{2g-1}, \tag{1}
$$

where $f \in A^{\dagger}$, $c_i \in K$ and

$$
\omega_i = \frac{x^i \, dx}{2y} \qquad (i = 0, \dots, 2g - 1). \tag{2}
$$

That is, the ω_i form a basis of the odd part of the de Rham cohomology of *A* † . By linearity and the fundamental theorem of calculus, we reduce the integration of ω to the integration of the ω_i .

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ │ ヨ

 2990

Integrals between points in non-Weierstrass discs

- Let ϕ denote Frobenius. Recall that a *Teichmüller point* of $X_{\mathbf{O}}$ is a point *P* such that $\phi(P) = P$.
- One way to compute Coleman integrals $\int_P^Q \omega_i$:
	- Find the Teichmüller points P', Q' in the residue discs of P, Q.
	- Use Frobenius to compute $\int_{P'}^{Q'} \omega_i$.
	- Use additivity in endpoints to recover the integral: $\int_{P}^{Q} \omega_i = \int_{P}^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^{Q} \omega_i$.

 QQ

イロト (例) (注) (注) (注)

Integrals between points in non-Weierstrass discs

Let ϕ denote Frobenius. Recall that a *Teichmüller point* of $X_{\mathbf{O}}$ is a point *P* such that $\phi(P) = P$.

One way to compute Coleman integrals $\int_P^Q \omega_i$:

- Find the Teichmüller points P', Q' in the residue discs of P, Q.
- Use Frobenius to compute $\int_{P'}^{Q'} \omega_i$.
- Use additivity in endpoints to recover the integral: $\int_{P}^{Q} \omega_i = \int_{P}^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^{Q} \omega_i$.

 QQ

イロト イ押 トイヨ トイヨ トーヨ

Integrals between points in non-Weierstrass discs

Let ϕ denote Frobenius. Recall that a *Teichmuller point* of $X_{\mathbf{Q}}$ is a point *P* such that $\phi(P) = P$.

One way to compute Coleman integrals $\int_P^Q \omega_i$:

- Find the Teichmüller points P', Q' in the residue discs of P, Q.
- Use Frobenius to compute $\int_{P'}^{Q'} \omega_i$.
- Use additivity in endpoints to recover the integral: $\int_{P}^{Q} \omega_i = \int_{P}^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^{Q} \omega_i.$

 QQ

イロト イ押 トイヨ トイヨ トーヨ

More on Frobenius:

• Calculate the action of Frobenius φ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

- Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system
- As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2}$ ≠ 1, the matrix *M* − *I* is invertible, and we may solve the system to obtain the integrals $\int_{P'}^{Q'} \omega_i$.

 QQ

イロト (個) イヨト (ヨ)

More on Frobenius:

• Calculate the action of Frobenius φ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2}$ ≠ 1, the matrix *M* − *I* is invertible, and we may solve the system to obtain the integrals $\int_{P'}^{Q'} \omega_i$.

 QQ

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

More on Frobenius:

• Calculate the action of Frobenius φ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$
\int_{P'}^{Q'} \omega_i = \int_{\Phi(P')}^{\Phi(Q')} \omega_i
$$

As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2}$ ≠ 1, the matrix *M* − *I* is invertible, and we may solve the system to obta[i](#page-22-0)n the integrals $\int_{P'}^{Q'} \omega_i$ [.](#page-18-0)

Balakrishnan, Bradshaw, Kedlaya (MIT) [Coleman integration for hyperelliptic curves](#page-0-0) ANTS-IX 13 / 21

 QQ

More on Frobenius:

• Calculate the action of Frobenius φ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$
\int_{P'}^{Q'} \omega_i = \int_{P'}^{Q'} \phi^* \omega_i
$$

As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2}$ ≠ 1, the matrix *M* − *I* is invertible, and we may solve the system to obta[i](#page-23-0)n the integrals $\int_{P'}^{Q'} \omega_i$ [.](#page-18-0)

Balakrishnan, Bradshaw, Kedlaya (MIT) [Coleman integration for hyperelliptic curves](#page-0-0) ANTS-IX 13 / 21

 QQ

More on Frobenius:

• Calculate the action of Frobenius φ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$
\int_{P'}^{Q'} \omega_i = \int_{P'}^{Q'} \left(df_i + \sum_{j=0}^{2g-1} M_{ij} \omega_j \right)
$$

As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2}$ ≠ 1, the matrix *M* − *I* is invertible, and we may solve the system to obta[i](#page-24-0)n the integrals $\int_{P'}^{Q'} \omega_i$ [.](#page-18-0)

Balakrishnan, Bradshaw, Kedlaya (MIT) [Coleman integration for hyperelliptic curves](#page-0-0) ANTS-IX 13 / 21

 Ω

More on Frobenius:

 \bullet Calculate the action of Frobenius ϕ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$
\int_{P'}^{Q'} \omega_i = \int_{P'}^{Q'} df_i + \sum_{j=0}^{2g-1} M_{ij} \int_{P'}^{Q'} \omega_j
$$

 Ω

As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2} \neq 1$, the matrix *M* − *I* is invertible, and we may solve the system to obta[i](#page-25-0)n the integrals $\int_{P'}^{Q'} \omega_i$ [.](#page-18-0)

Balakrishnan, Bradshaw, Kedlaya (MIT) [Coleman integration for hyperelliptic curves](#page-0-0) ANTS-IX 13 / 21

More on Frobenius:

• Calculate the action of Frobenius $φ$ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$
\int_{P'}^{Q'} \omega_i = f_i(Q') - f_i(P') + \sum_{j=0}^{2g-1} M_{ij} \int_{P'}^{Q'} \omega_j
$$

 Ω

As the eigenvalues of the matrix *M* are algebraic integers of **C**_{*p*}-norm $p^{1/2} \neq 1$, the matrix *M* − *I* is invertible, and we may solve the system to obta[i](#page-26-0)n the integrals $\int_{P'}^{Q'} \omega_i$ [.](#page-18-0)

Balakrishnan, Bradshaw, Kedlaya (MIT) [Coleman integration for hyperelliptic curves](#page-0-0) ANTS-IX 13 / 21

More on Frobenius:

• Calculate the action of Frobenius φ on each basis differential, letting

$$
\Phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$

Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$
\int_{P'}^{Q'} \omega_i = f_i(Q') - f_i(P') + \sum_{j=0}^{2g-1} M_{ij} \int_{P'}^{Q'} \omega_j
$$

As the eigenvalues of the matrix *M* are algebraic integers of C_p -norm $p^{1/2}$ ≠ 1, the matrix *M* − *I* is invertible, and we may solve the system to obta[i](#page-27-0)n the integrals $\int_{P'}^{Q'} \omega_i$ [.](#page-18-0)

 Ω

- The linear system gives us the integral between different residue discs.
- Putting it all together, we have

$$
\int_{P}^{Q} \omega_{i} = \int_{P}^{P'} \omega_{i} + \int_{P'}^{Q'} \omega_{i} + \int_{Q'}^{Q} \omega_{i}
$$

- The linear system gives us the integral between different residue discs.
- Putting it all together, we have

$$
\int_{P}^{Q} \omega_i = \int_{P}^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^{Q} \omega_i
$$

- The linear system gives us the integral between different residue discs.
- Putting it all together, we have

$$
\int_P^Q \omega_i = \int_P^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^Q \omega_i
$$

- The linear system gives us the integral between different residue discs.
- Putting it all together, we have

$$
\int_P^Q \omega_i = \int_P^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^Q \omega_i
$$

- The linear system gives us the integral between different residue discs.
- Putting it all together, we have

$$
\int_P^Q \omega_i = \int_P^{P'} \omega_i + \int_{P'}^{Q'} \omega_i + \int_{Q'}^Q \omega_i
$$

A different linear system

We could also bypass the computation of Teichmüller points by setting up the following linear system:

¹ Calculate the action of Frobenius on each basis element:

$$
(\Phi^*)\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$
 (3)

$$
\sum_{j=0}^{2g-1} (M-I)_{ij} \int_P^Q \omega_j = f_i(P) - f_i(Q) - \int_P^{\Phi(P)} \omega_i - \int_{\Phi(Q)}^Q \omega_i.
$$
 (4)

• Solving the linear system yields $\int_P^Q \omega_j = (M - I)^{-1} \left(f_i(P) - f_i(Q) - \int_P^{\Phi(P)} \omega_i - \int_{\Phi(Q)}^Q \omega_i \right).$

 QQQ

KO KROK KEK KEK E

A different linear system

We could also bypass the computation of Teichmüller points by setting up the following linear system:

¹ Calculate the action of Frobenius on each basis element:

$$
(\boldsymbol{\phi}^*)\boldsymbol{\omega}_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\boldsymbol{\omega}_j.
$$
 (3)

² By change of variables, we obtain

$$
\sum_{j=0}^{2g-1} (M-I)_{ij} \int_P^Q \omega_j = f_i(P) - f_i(Q) - \int_P^{\Phi(P)} \omega_i - \int_{\Phi(Q)}^Q \omega_i.
$$
 (4)

• Solving the linear system yields $\int_P^Q \omega_j = (M - I)^{-1} \left(f_i(P) - f_i(Q) - \int_P^{\Phi(P)} \omega_i - \int_{\Phi(Q)}^Q \omega_i \right).$ $(\Box \rightarrow (\overline{\partial}) \rightarrow (\exists) \rightarrow (\exists)$

 2990

A different linear system

We could also bypass the computation of Teichmüller points by setting up the following linear system:

¹ Calculate the action of Frobenius on each basis element:

$$
(\Phi^*)\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.
$$
 (3)

² By change of variables, we obtain

$$
\sum_{j=0}^{2g-1} (M-I)_{ij} \int_P^Q \omega_j = f_i(P) - f_i(Q) - \int_P^{\Phi(P)} \omega_i - \int_{\Phi(Q)}^Q \omega_i.
$$
 (4)

• Solving the linear system yields $\int_P^Q \omega_j = (M - I)^{-1} \left(f_i(P) - f_i(Q) - \int_P^{\Phi(P)} \omega_i - \int_{\Phi(Q)}^Q \omega_i \right).$ ★ 4 重 ★ 4 重 ★ 一重 -299

Weierstrass endpoints of integration

Suppose now that *P*, *Q* lie in different residue discs, at least one of which is Weierstrass.

Proposition

Let ω *be an odd, everywhere meromorphic di*ff*erential on X. Choose* $P, Q \in X(\mathbb{C}_p)$ *which are not poles of* ω *, with P Weierstrass. Then for <i>ι the hyperelliptic involution,* $\int_P^Q \omega = \frac{1}{2}$ 2 R*^Q* ^ι(*Q*) ω*. In particular, if Q is also a Weierstrass point, then* $\int_P^Q w = 0$ *.*

 QQQ

Numerical examples: torsion points (Leprévost)

Leprévost showed that the divisor $(1, -1) - \infty^+$ on the genus 2 curve *y*² = (2*x* − 1)(2*x*⁵ − *x*⁴ − 4*x*² + 8*x* − 4) over **Q** is torsion of order 29. The integrals of holomorphic differentials against this divisor must vanish. Indeed, let

$$
C: y^2 = x^5 + \frac{33}{16}x^4 + \frac{3}{4}x^3 + \frac{3}{8}x^2 - \frac{1}{4}x + \frac{1}{16}
$$

be the pullback of Leprévost's curve by the linear fractional transformation $x \mapsto (1 - 2x)/(2x)$ taking ∞ to 1/2. The original points $(1, -1)$, ∞⁺ correspond to the points $P = (-1, 1)$, $Q = (0, \frac{1}{4})$ on *C*. The curve *C* has good reduction at $p = 11$, and we compute

$$
\int_{P}^{Q} \omega_0 = \int_{P}^{Q} \omega_1 = O(11^6), \int_{P}^{Q} \omega_2 = 7.11 + 6.11^2 + 3.11^3 + 11^4 + 5.11^5 + O(11^6),
$$

consistent with the fact that $Q - P$ is torsion and ω_0 , ω_1 are holomorphic but ω_2 is not.

 QQQ

Numerical examples: Chabauty method

We give an example arising from the Chabauty method, taken from "The method of Chabauty and Coleman" (McCallum-Poonen). Let *X* be the curve

$$
y^2 = x(x-1)(x-2)(x-5)(x-6),
$$

whose Jacobian has Mordell-Weil rank 1. The curve *X* has good reduction at 7, and

$$
X(\mathbf{F}_7) = \{ (0,0), (1,0), (2,0), (5,0), (6,0), (3,6), (3,-6), \infty \}.
$$

By Theorem 5.3(2) of [McC-P], we know $|X(Q)| \le 10$. However, we can find 10 rational points on *X*: the six rational Weierstrass points, and the points $(3, \pm 6)$, $(10, \pm 120)$. Hence $|X(\mathbf{Q})| = 10$.

 QQQ

イロト イ部 トイヨ トイヨ トーヨ

Chabauty method, continued

Since the Chabauty condition holds, there must exist a holomorphic differential ω for which $\int_{\infty}^{Q} \omega = 0$ for all $Q \in X(Q)$. We can find such a differential by taking Q to be one of the rational pop-Weightrass differential by taking *Q* to be one of the rational non-Weierstrass points, then computing $a := \int_{\infty}^{Q} w_0, b := \int_{\infty}^{Q} w_1$ and setting $\omega = h w_0 - g w_0$. For $Q = (3, 6)$, we obtain $\omega = b\omega_0 - a\omega_1$. For $Q = (3, 6)$, we obtain

$$
a = 6 \cdot 7 + 6 \cdot 7^2 + 3 \cdot 7^3 + 3 \cdot 7^4 + 2 \cdot 7^5 + O(7^6)
$$

$$
b = 4 \cdot 7 + 2 \cdot 7^2 + 6 \cdot 7^3 + 4 \cdot 7^5 + O(7^6).
$$

We then verify that $\int_{Q}^{R} \omega = 0$ for each of the other rational points *R*.

 QQ

イロト イ押 トイヨ トイヨ トーヨ

Future directions

- Iterated integrals
	- Can define

$$
\int_P^Q \omega_n \cdots \omega_1 = \int_0^1 \int_0^{t_1} \cdots \int_0^{t_{n-1}} f_n(t_n) \cdots f_1(t_1) dt_n \cdots dt_1
$$

which appear in applications of Coleman integration, e.g., *p*-adic regulators in *K*-theory, and the nonabelian Chabauty method

- Beyond hyperelliptic curves
	- Convert algorithms for computing Frobenius actions on de Rham cohomology (Gaudry-Gürel, Castryck-Denef-Vercauteren) into algorithms for computing Coleman integrals on such curves
- Heights after Harvey
	- Our algorithms have linear runtime dependence on the prime *p*, arising from the corresponding dependence in Kedlaya's algorithm; could possibly follow Harvey's variant of Kedlaya's algorithm to reduce this to square-root depe[n](#page-38-0)dence on *p*

 QQ

Applications of explicit Coleman integration

- *p*-adic heights on curves: $h_p(D_1, D_2) = \int_{D_2} \omega_{D_1}$
- Syntomic regulators on curves: for ${f, g} \in K_2(C)$, $\text{reg}_p(\{f,g\})(\omega) = \int_{(f)} \log(g)\omega$
- *p*-adic polylogarithms and multiple zeta values, following Besser-de Jeu
- Experiments with Chabauty's method: find *P* such that $\int_0^P \omega = 0$
- Torsion points on curves (Coleman's original application, for curves of $g > 1$)
- Kim's nonabelian Chabauty method: use $\int_b^z \omega_0 \omega_1$ to recover integral points on elliptic curves

 QQQ

イロトス 御下ス ヨトス ヨトッ ヨ